
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2016

Intrusion detection using probabilistic graphical
models
Liyuan Xiao
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Xiao, Liyuan, "Intrusion detection using probabilistic graphical models" (2016). Graduate Theses and Dissertations. 16041.
https://lib.dr.iastate.edu/etd/16041

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F16041&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F16041&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F16041&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F16041&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F16041&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F16041&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F16041&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/16041?utm_source=lib.dr.iastate.edu%2Fetd%2F16041&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Intrusion detection using probabilistic graphical models

by

Liyuan Xiao

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Program of Study Committee:

Carl K. Chang, Major Professor

Ying Cai

Hailiang Liu

Simanta Mitra

Johnny S. Wong

Iowa State University

Ames, Iowa

2016

Copyright c© Liyuan Xiao, 2016. All rights reserved.

www.manaraa.com

ii

TABLE OF CONTENTS

LIST OF TABLES . iv

LIST OF FIGURES . v

ACKNOWLEDGEMENTS . vii

CHAPTER 1. GENERAL INTRODUCTION 1

CHAPTER 2. BAYESIAN MODEL AVERAGING OF BAYESIAN NET-

WORK CLASSIFIERS FOR INTRUSION DETECTION 6

2.1 Introduction . 7

2.2 Bayesian Networks and Bayesian Model Averaging 9

2.2.1 Bayesian Network Classifier . 9

2.2.2 Bayesian Model Averaging of Bayesian Network Classifiers 11

2.2.3 Finding the k-best Bayesian Network Structures 13

2.3 Description of NSL-KDD Dataset . 14

2.4 Construction and Evaluation of BNMA Classifier 14

2.4.1 Feature Selection . 15

2.4.2 Data Discretization . 16

2.4.3 Classifier Training and Evaluation . 18

2.5 Experimental Results . 19

2.6 Conclusion and Future Work . 22

CHAPTER 3. SITUATIONAL DATA FOR INTRUSION DETECTION SYS-

TEM . 26

3.1 Introduction . 27

3.2 Related Work . 29

www.manaraa.com

iii

3.2.1 Hidden Markov Model . 29

3.2.2 Situ Framework . 31

3.3 Situational Data for Intrusion Detection . 32

3.3.1 Definition of Situational Data Model for Intrusion Detection 32

3.3.2 SQL Injection . 35

3.3.3 Collection of Situational Data for Intrusion Detection 36

3.4 Evaluation of Situational Data for IDS by HMM 41

3.4.1 Description of Experiment . 41

3.4.2 Experiment Results . 43

3.5 Conclusion and Future Work . 47

CHAPTER 4. SITUATION AWARE INTRUSION DETECTION SYSTEM

USING CONDITIONAL RANDOM FIELDS 49

4.1 Introduction . 50

4.2 Conditional Random Fields . 52

4.3 Situation Aware Intrusion Detection using Conditional Random Fields 55

4.3.1 Framework of SA-CRF-IDS . 55

4.3.2 Parameters Training for SA-CRF-IDS 56

4.3.3 Inference of SA-CRF-IDS . 57

4.4 Experiment Design and Evaluation . 58

4.4.1 Experiment Design . 58

4.4.2 Experiment Evaluation . 64

4.5 Conclusions . 69

CHAPTER 5. GENERAL CONCLUSION . 71

REFERENCES . 75

www.manaraa.com

iv

LIST OF TABLES

Table 2.1 List of Selected Features . 17

Table 2.2 Accuracy Comparison by k Value and Size of Training set 21

Table 2.3 AUC Comparison by k and Size of Training set 21

Table 3.1 Data summary . 38

Table 3.2 Possible values of action and desire . 39

Table 3.3 An example sequence of Situational data set 40

Table 4.1 Sample output from testing step by applying CRF++ on action-only

sequences . 61

Table 4.2 Sample output from testing step of desire CRF by applying CRF++ on

the Situational data set . 63

Table 4.3 Sample output from testing step of tempI CRF by applying CRF++ on

the Situational data set . 64

www.manaraa.com

v

LIST OF FIGURES

Figure 2.1 A simple example of Bayesian network: Lung cancer network. 11

Figure 2.2 Flowchart illusrating the training and evaluation of BNMA classifier . 16

Figure 2.3 Comparison of detection accuracy by size of training set 20

Figure 2.4 Comparison of AUC by size of training set 22

Figure 2.5 A consensus network built from the top 10 networks trained on sample

size 10000. The correspondences between the nodes and the features are

: 0-service; 1-src bytes; 2-dst bytes; 3-logged in; 4-count; 5-srv count; 6-

serror rate; 7-srv serror rate; 8-srv diff host rate; 9-dst host count; 10-

dst host srv count; 11-dst host diff srv rate; 12-class (intrusion or not

intrusion). Note that the class variable is shadowed. Directed edges

existing in all 10 structures are depicted as solid arrows. The set of

edges that exist in all structures but with various directions are depicted

as solid lines. 23

Figure 2.6 The Bayesian network trained on sample size 10000 using greedy hill

climbing search method. The correspondences between the nodes and

the features are the same as those in Figure 2.5. 23

Figure 3.1 Hidden Markov Model . 30

Figure 3.2 Situ Framework . 31

Figure 3.3 Situational Data Model . 34

Figure 3.4 Cooperative Research Environment System 37

Figure 3.6 Accuracies of HMMs . 45

Figure 3.8 ROC Curves of HMMs . 46

www.manaraa.com

vi

Figure 3.10 False Positive Rates and True Positive Rates of HMMs 48

Figure 4.1 Linear Chain Conditional Random Fields 53

Figure 4.2 Hidden Markov Model . 54

Figure 4.3 Flowchart illusrating the training and evaluation of SA-CRF-IDS . . . 56

Figure 4.4 Process of CRF in Action-Only Sequence Data Set 60

Figure 4.5 Process of CRF in Situational Data Set 62

Figure 4.7 Accuracy and ROC curves of HMM1 and CRF1 66

Figure 4.9 False Positive Rates and True Positive Rates of HMM1 and CRF1 . . . 67

Figure 4.11 Accuracy and ROC curves of HMM2 and CRF2 68

Figure 4.13 False Positive Rates and True Positive Rates of HMM2 and CRF2 . . . 70

www.manaraa.com

vii

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to my advisor and committee

chair, Professor Carl K. Chang, and my committee members, Professor Ying Cai, Professor

Hailiang Liu, Professor Johnny Wong, and Dr. Simanta Mitra, for their innovative guidance,

tremendous patience, constructive suggestions and enormous support throughout this research

and the writing of this thesis. Their insights and words of encouragement have often inspired

me and renewed my hope for completing my graduate education.

I would also like to thank all my colleagues in the Software Engineering Lab for their

suggestions and help on my research work. I am grateful for the support and assistance from

IRB committee and more than 120 participants from Iowa State University, Nihon University

in Japan, and Northeastern University in China on our experiment data collection. Without

them, this thesis would not have been possible.

Finally, thanks to my families for their encouragement, support and love all the time.

www.manaraa.com

1

CHAPTER 1. GENERAL INTRODUCTION

Modern computer systems are plagued by security vulnerabilities and flaws on many levels.

Those vulnerabilities and flaws are discovered and exploited by attackers for their various

intrusion purposes, such as eavesdropping, data modification, identity spoofing, password-based

attack, and denial of service attack, etc. The security of our computer systems and data is

always at risk because of the open society of the internet. Due to the rapid growth of the

internet applications, intrusion detection and prevention have become increasingly important

research topics, in order to protect networking systems, such as the Web servers, database

servers, cloud servers and so on, from threats.

According to the definition in [10], a computer attack is the intelligence of evading or evading

attempt of computer security policies, acceptable use policies, or standard security practices.

Intrusion Detection can be seen just as a classification problem in which a given network traffic

event is assigned as normal or malicious. The focus of this thesis is to build Intrusion Detection

System, which is a mechanism designed to monitor and analyze network traffic information and

users’ activities in the target system in a given environment, and decide whether the activities

are symptomatic of an attack or a legitimate use of the system. The process of intrusion detec-

tion includes the following phases: data collection, data pre-processing, intrusion recognition,

and reporting and response. In order to fight against extraordinarily intelligent cyber-attacks

in the era of rapidly growing information technology, effective and efficient intrusion detection

systems are needed to promptly detect and prevent intrusion. Therefore, automatic intrusion

detection is more demanding than ever. Various artificial intelligence and machine learning

techniques, e.g., rule-based induction, classification, data clustering and data mining, have

been widely used to obtain underlying models from training data. In this thesis, we aim to

www.manaraa.com

2

build more accurate and efficient intrusion detection systems for classifying audited data into

being intrusive or normal, using probabilistic graphical models.

According to different methodologies for training and predicting, there are mainly three

categories [43] of intrusion detection systems: signature-based intrusion detection, anomaly-

based intrusion detection, and hybrid intrusion detection. Signature-based intrusion detection

identifies intrusions by matching audited data with pre-defined description of intrusion. This

method is efficient in detecting well-known types of intrusions but usually fails to detect zero-

day type intrusions. Anomaly-based intrusion detection methods establish models from normal

behaviors and identify audited data by measuring the deviation between observed data and the

built models. It is good at detecting new intrusions, but usually has high false positive rate.

The hybrid intrusion detection is a combination of the former two approaches. The intrusion

detection systems built in this thesis are hybrid intrusion detection systems that are obtained

based on both normal and abnormal data records.

As summarized by Liao et al. [42], there are three main challenges in current intrusion

detection researches:

1. Lower the false negative rate is one focus for signature-based intrusion detections, espe-

cially for some zero-day attacks. And lower the false positive rate is a focus for anomaly-

based intrusion detection.

2. Collect training data set to build intrusion detection system. An intrusion may cause

changes in some network traffic features. Those features could be collected from data

packets in networks, command sequences from user input, low-level system information,

e.g., system call sequences, log files, and CPU/memory usage, etc. A problem of great

interest [8] in the training of intrusion detection systems is how to select key and effective

features from a huge set of possible related features.

3. Enable intrusion detection systems to respond promptly and be real time.

In this thesis, we attempt to build more efficient Intrusion Detection System through three

different approaches, from different perspectives and based on different situations. We cover

those three approaches in Chapter 2, Chapter 3 and Chapter 4, respectively.

www.manaraa.com

3

In Chapter 2, we propose Bayesian Model Averaging of Bayesian Network (BNMA) Clas-

sifiers for intrusion detection. In this work, we compare our BNMA classifier with Bayesian

Network classifier and Naive Bayes classifier [26, 63], which were shown be good models for

detecting intrusion with reasonable accuracy and efficiency in the literature. The main idea

of BNMA [58] is that we choose k best Bayesian network models instead of using just one,

and average those k selected models. When we have large amount of training data, many

approaches are capable of producing models that fit the data well, and thus predicting future

data accurately. However, large-size training dataset may be time consuming to collect in

practice, we then very often have to rely on small-size dataset. In this case, there may exist

more than one Bayesian networks that perform equally well in fitting the distribution of the

training dataset, and the performance of using any single Bayesian Network classifier may not

be satisfactory. The issue just mentioned was originally a very important motivation for us

to think about using the BNMA on intruders and normal users classification. The BNMA

first selects the k best Bayesian network models based on models’ posterior probability out

of all possible models given the training data. Then it predicts audited data by averaging all

the k chosen models with weights proportional to their posterior probabilities. We conduct

experiments over the KDD CUP 99 dataset [31], one of the most popular public datasets for

evaluating intrusion detection systems. Our experiment results show that the BNMA classifier

performs better than the Bayesian Network Classifier and Naive Bayesian Classifier in both

accuracy and AUC (Area Under ROC). From the experiment results, we see that BNMA can

be more efficient and reliable than its competitors, i.e., the Bayesian network classifier and

Naive Bayesian Network classifier, for all different sizes of training dataset. The advantage

of BNMA is more pronounced when the training dataset size is small. In fact, BNMA with

smaller-size training dataset can work equally well, or even better than other models with

larger-size training dataset. Therefore, the BNMA has the ability to accelerate the detection

process as it could potentially save the time needed to collect more training data records.

In Chapter 3, we introduce the Situational Data Model as a method for collecting dataset

to train intrusion detection models. Unlike previously discussed static features as in the KDD

CUP 99 data [31], which were collected without time stamps, Situational Data are collected

www.manaraa.com

4

in chronological sequence. Therefore, they can capture not only the dependency relationships

among different features, but also relationships of values collected over time for the same fea-

tures. The Situational Data Model is designed following the Situ framework [11], which was

originally proposed for human-intention-driven service evolution in context-aware service envi-

ronments. The Situ framework has a few advantages. For instance, Situ allows us to model and

detect human intention by inferring human desires [64], and capture the corresponding context

values through observation. Specifically, we collect our Situational Dataset following the struc-

ture of situation, consisting of desire, action and environmental context: The desire component

describes a user’s segmental thinking about the system at a specific time. This component

makes the Situational data model to be more informative than other sequential data. On the

other hand, the action component of the Situaiontal Dataset indicates a user’s behaviors and

operations on the system, and the environmental context indicates the system’s status during

the time when the actions are performed. In Situational Data Model, each data record is a se-

quence of situations collected at different time points. With Situational Dataset, we are able to

train the relationships between actions, context and desires that happen at different time points,

and build intrusion detection systems to classify the intention of a new sequence of situations,

into being either intrusive or normal. In our research, we collected our Situational Dataset in

Cooperative Research Envrionment(CoRE), which is a real web application. Through CoRE,

the data set is generated from more than 120 invited participants. To compare the Situational

Dataset and the traditional dataset consisting of only action sequences, we adopt the Hidden

Markov Model (HMM) to build intrusion detection systems based on both datasets and then

compare the two IDS. The experiment results show that the intrusion detection model trained

by Situational Dataset outperforms that trained by action-only sequences.

In Chapter 4, we introduce the Situation Aware with Conditional Random Fields Intrusion

Detection System (SA-CRF-IDS). The SA-CRF-IDS is trained by probabilistic graphical model

Conditional Random Fields (CRF) [32] over the Situational Dataset proposed in Chapter 3.

In SA-CRF-IDS, we hope to further improve the intrusion detection efficiency by both using

a more informative training dataset, i.e., Situational Dataset, and adopting a more efficient

classification model, i.e., CRF. In this chapter, we compare the Conditional Random Fields

www.manaraa.com

5

and Hidden Markov Model for intrusion detection by both theoretic arguments and numerical

experiments. For intrusion detection, CRFs can be more flexible and representative than

other similar training methods such as the Hidden Markov Model, as often discussed in the

literature. Our SA-CRF-IDS framework includes two layers: the desire layer and temporal

intention layer. Both of the two layers are trained by CRF. The predicting processes of SA-

CRF-IDS can be described as follows: Firstly, in the desire layer, SA-CRF-IDS labels a sequence

of desires according to the sequence of actions and context. Secondly, in the temporal intention

layer, SA-CRF-IDS labels a sequence of temporal intention value which quantifies the degree

of attacking potential of the desires in numbers. Thirdly, the intention of situation sequences

are classified to be either intrusive or normal based on the corresponding sequence of temporal

intention values. A key idea of SA-CRF-IDS is that it predicts future audited data based on

human’s punctuated desires, instead of relying only on user’s action and environmental context.

In this chapter, our main interest is to compare the Conditional Random Field model and the

Hidden Markov Model on each of the two datasets: the dataset with action-only sequences,

and Situational Dataset proposed in Chapter 3. The results show that the CRF outperforms

HMM with significantly better detection accuracy, and better ROC curve when we run the

experiment on the non-Situational dataset. On the other hand, the two training methods have

very similar performance when the Situational Dataset is adopted.

We conclude our work from Chapter 2 to Chapter 4 with a discussion in Chapter 5, including

the accomplished work and potential future work.

www.manaraa.com

6

CHAPTER 2. BAYESIAN MODEL AVERAGING OF BAYESIAN

NETWORK CLASSIFIERS FOR INTRUSION DETECTION

Abstract

In order to defend against extraordinary intelligent attacks in the era of rapidly grow-

ing information and technology nowadays, effective and efficient intrusion detection models

are needed to detect and prevent intrusion promptly. Bayesian network (BN) classifiers with

powerful reasoning capabilities have been increasingly utilized to detect intrusion attacks with

reasonable accuracy and efficiency. However, existing approaches using BN classifiers for in-

trusion detection face two problems. First, the structures of Bayesian network classifiers are

either manually built with the help of domain knowledge or trained from data using heuristic

methods that usually select suboptimal models. Second, the classifiers are trained using very

large datasets which may be time consuming to obtain in practice. When the size of training

dataset is small, the performance of a single Bayesian network classifier is significantly reduced

due to its inability to represent the whole probability distribution. To alleviate these problems,

we build a Bayesian classifier by Bayesian Model Averaging (BMA) over the k-best Bayesian

network classifiers, called Bayesian Network Model Averaging (BNMA) classifier. We train and

evaluate the classifier on the NSL-KDD dataset, which is less redundant, thus more judicial

than the commonly used KDD Cup 99 dataset. We show that the BNMA classifier performs

significantly better in terms of detection accuracy and Area Under ROC (AUC) than the Naive

Bayes classifier and the Bayesian network classifier built with heuristic method. We also show

that the BNMA classifier trained using a small dataset even outperforms two other classifiers

trained using a very large dataset, thus BNMA is particularly effective when large training

datasets are unavailable. This also implies that the BNMA is beneficial in accelerating the

www.manaraa.com

7

detection process due to its less dependance on the potentially prolonged process of collecting

large training datasets.

Key Words: Intrusion detection system, Bayesian network, Bayesian Model Averaging, De-

tection accuracy.

2.1 Introduction

An intrusion detection system is a mechanism used to monitor system and network situa-

tions, collect useful data such as suspicious activities and environmental context information,

and analyze such data to predict and detect malicious intentions. As the amount of network

throughput increases and security threat intensifies, intrusion detection systems have drawn

much attention in recent years. In general, intrusion detection approaches are classified as

either Signature-based Intrusion Detection (SD) or Anomaly-based Intrusion Detection (AD).

SD is the process to compare signature patterns of known attacks or threats against captured

events for recognizing possible intrusions. AD is the process to find deviation from a known

behavior, and construct profiles representing the normal or expected behaviors derived from

monitoring regular activities, network connections, hosts or users over a period of time [42].

Existing intrusion detection systems (IDS) are divided into five different types according to

a survey paper by They are: Network-based IDS, which monitors network traffic data; Host-

based IDS, which monitors and analyzes host activities like system calls, application logs and

so on; Stack-based IDS, which examines the packets as they go through the TCP/IP stack;

Protocol-Based IDS, which monitors the protocol in use of the computing system; and Graph-

Based IDS, which is concerned with detecting intrusions that involve connections between many

hosts or nodes.

Regardless of the types of systems, the challenge is to build effective predictive models with

low error rates by utilizing and integrating various data resources. To achieve this goal, various

approaches have been proposed. These include statistic-based, pattern-based, rule-based, state-

based and heuristic-based approaches. As a statistic-based approach, Bayesian network (BN)

www.manaraa.com

8

has been widely used in intrusion detection field due to its robustness in modeling the joint

distribution of random variables and reasoning under uncertainty.

Sebyala et al. [49], Amor et al. [4], Vijayasarathy et al. [60], and Altwaijry & Algarny [3]

built Naive Bayesian classifier, a type of simplified BN, to identify possible intrusions. Amor

et al. [4] also compared Naive Bayes with the technique of decision tree and showed that Naive

Bayes can reach a result almost as good as decision tree but with much faster computation.

However, there is a very strong assumption in Naive Bayes that the feature nodes in the Naive

Bayes model are independent from each other given the root node, which is not always the case

in practice.

Kruegel et al. [38] proposed an event classification that makes full use of Bayesian networks

and allows the modeling of inter-feature-node dependencies. They showed that these extensions

improve the quality of the decision process and significantly reduce the number of false alarms.

Lu et al. [26] gave a two-stratum Bayesian networks-based anomaly detection and decision

model for IDS. Laskey et al. [41] created an innovative human behavior model to model user

queries and detect situations and insider threats to information systems using multi-entity

Bayesian networks. In [5], An et al. used dynamic Bayesian networks to model temporal

environments and detect any privacy intrusions. In these applications, the network model

structures were manually constructed with the help of domain knowledge without utilizing

the training data that better reflects the real situation. To address this problem, Wee et al.

[63] performed model selection by learning the BN structure from data. However, the model

selection in [63] was conducted using heuristic methods, which usually select suboptimal models.

Further, most of the classifiers were trained and evaluated by utilizing the KDD Cup 99

dataset, which consists of about 0.5 million records [31]. A classifier trained with such a huge

training dataset is usually capable of representing the probability distribution, thus achieves

very good performance. However, obtaining such large-scale datasets can be challenging in

practice, as it may take an unreasonably long time to collect the data resources. When the

training dataset is small relative to the number of features considered, it is usually hard to select

a single classifier model that properly represents the probability distribution of the model space.

In such a situation, using a single model usually leads to poor classification on future data.

www.manaraa.com

9

To address the problems raised above, we built a Bayesian classifier for intrusion detection

by Bayesian Model Averaging (BMA) over the k-best Bayesian network classifiers. Instead

of selecting a single Bayesian network classifier, we perform model selection to find the top k

Bayesian network classifiers according to a certain scoring metric. When future data points are

classified, the decision is made by averaging over the prediction results of the k-best Bayesian

network classifiers. The motivation of doing this is that multiple Bayesian networks are better

than one Bayesian network in representing the probability distribution of the model space, thus

they offer better predictive power than one network, particularly in the domain where only small

training datasets are available. To the best of our knowledge, this is the first attempt to employ

BMA method in intrusion detection research.

The rest of the paper is organized as follows: In Section 2.2, we briefly introduce the

concept of Bayesian network classifiers and BMA. We then introduce our BNMA classifier,

which makes predictions by averaging over k-best Bayesian network classifiers. In Section 2.3,

we describe the NSL-KDD dataset from which our training and testing datasets are drawn.

In Section 2.4, we outline the construction and evaluation of our Bayesian Network Model

Averaging (BNMA) classifier. In Section 2.5, we illustrate the details about the design of

experiments and experimental results. In Section 2.6, we conclude with some discussions and

ideas for future work.

2.2 Bayesian Networks and Bayesian Model Averaging

2.2.1 Bayesian Network Classifier

A Bayesian network G is a probabilistic graphical model that encodes a joint probability

distribution over a set of variables X = {X1, X2, ..., Xn} based on conditional independencies

[24]. It is a directed acyclic graph (DAG) where each node represents a random variable and

an edge denotes a direct probabilistic dependency between the two connected nodes. For each

node, there is a conditional probability distribution (CPD) containing the probabilities of the

node taking different values given its parents’ value. Formally, the DAG structure asserts that

each node is conditionally independent of all non-descendants given its parent nodes. By these

www.manaraa.com

10

assertions, the BN compactly represents the joint probability distribution as

p(X1, X2, ..., Xn) =

n∏
i=1

p(Xi|PaG(Xi)), (2.1)

where PaG(Xi) denotes the set of parent nodes of Xi in G, and p(Xi|PaG(Xi)) specifies the

conditional probability distribution (CPD) of Xi given PaG(Xi).

Figure 2.1 gives a simple example of Bayesian network that portrays the probabilistic re-

lationships among binary variables Polution (P), Smoker (S), Cancer (C), XRay (X) and

Dyspnoea (D). The table associated with each variable is called Conditional Probability Table

(CPT), encoding the conditional probability distribution of the variable given its parents. The

joint probability distribution of the five variables can be written as

p(P, S,C,X,D) = p(P)P (S)p(C|P, S)p(X|C)p(D|C). (2.2)

As the conditional probability distribution can be calculated from the joint probability, a

Bayesian network consisting of a class variable and feature variables is readily applicable to

the classification task. Take the lung cancer network as an example, if we choose Cancer (C)

as the class variable (value unobserved), we can compute the probability of C = T given any

observed value set (p, s, x, d) as

p(C = T |p, s, x, d) =
p(C = T, p, s, x, d)

p(C = T, p, s, x, d) + p(C = F, p, s, x, d)
,

where p(C = T, p, s, x, d) and p(C = F, p, s, x, d) can be computed efficiently using Eq.(2.2).

Similarly, we can compute p(C = F |p, s, x, d). Then we decide the value of C by comparing

p(C = F |p, s, x, d) and p(C = T |p, s, x, d). Note that this is a binary classification, easily

generalized to multi-class classification by comparing the conditional probabilities of all values

of the class variable.

The Bayesian network structure and its associated CPDs can be specified with the help

of domain knowledge, e.g., the lung cancer network. However, in most cases, the network

structures and CPDs are unknown due to the lack of domain knowledge. In these cases, a

Bayesian network classifier can be learned from training data. The learning process contains

structural learning and conditional probability distribution estimation. In structural learning,

www.manaraa.com

11

Figure 2.1: A simple example of Bayesian network: Lung cancer network.

a scoring metric is employed to evaluate the fitness of a structure in relation to the training

data. Then, a search method is applied to find a good model [63] among possible structures.

Since the number of possible structures is super-exponential with respect to the number of

variables, finding the optimal structure is NP-hard [15]. Thus, some heuristic or approximate

methods, such as greedy search, are used. However, the model structures selected in this way

are often suboptimal. After the structure is constructed, the CPDs can be efficiently estimated

using well-developed statistical methods such as Maximum Likelihood Estimation (MLE) or

Bayesian Estimation [33].

2.2.2 Bayesian Model Averaging of Bayesian Network Classifiers

Regardless of types of the search methods used, these search methods suffer from the lack

of distinguishability of scoring metrics when the training data is sparse, i.e., the size of the

dataset is small relative to the number of variables. In this case, there can be many distinct

Bayesian networks fitting the training data equally well. Thus, using a single Bayesian network

potentially leads to poor predictions on future data.

www.manaraa.com

12

A promising solution to alleviate this problem is to employ BMA, which provides a princi-

pled approach to the model-uncertainty problem by integrating all possible models weighted by

their respective posterior probabilities. Formally, given a training dataset D and a future data

point x (a realization of the variable set X), we compute the posterior probability of observing

x as

p(x|D) =
∑
G

p(x|G,D)p(G|D), (2.3)

where p(G|D) specifies the posterior probability of a Bayesian network G given the training

data D. p(G|D) can be computed from commonly used scores such as BDe score [25]. Then,

p(x|G,D) can be computed by Eq. (2.2), as the network structure G is fixed in the conditional

setup.

Since computing Eq.(2.3) requires enumerating all possible networks, which is super-exponential

with respect to the number of variables, it is not of practical use. One solution is to approximate

this exhaustive enumeration by using a selected set of model structures in G, i.e.,

p(x|D) ≈
∑

G∈G p(x|G,D)p(G|D)∑
G∈G p(G|D)

.

Dash and Cooper [16] described an efficient solution to BMA for prediction over the set

of Bayesian network structures consistent with a partial ordering and with bounded in-degree.

However, this approach is of limited applicability as it performs model averaging over only

a restricted class of BNs consistent with a particular partial ordering. Thus, only a small

portion of probability density can be accounted for. Tian et al. [58] proposed to find the

k-best Bayesian network structures and use them to approximately compute p(h|D), i.e., the

posterior probability of any hyperthesis h. They implemented this idea to address the problem

of structure discovery in BNs, i.e., computing p(f |D), the posterior probability of the presence of

any structural feature f . (e.g., an edge, in BN structures). They showed that the approximation

achieved reasonable accuracy and outperformed the classical sampling methods such as MCMC

[18] for structure discovery in BNs. In this study, we employ this idea to address the problem

of model averaging for prediction (classification). We select the k-best Bayesian networks

G1, ..., Gk, and use them to approximately compute p(x|D) as shown in Eq.(2.4),

p(x|D) ≈
∑k

i=1 p(x|Gi, D)p(Gi|D)∑k
i=1 p(G

i|D)
. (2.4)

www.manaraa.com

13

Once p(x|D) is computed, we could build a classifier to predict the value of any class variable

as shown in Section 2.2.1. When k = 1, we select the best Bayesian network and use this single

network to build a classifier. Thus, it is a special case of BMA.

2.2.3 Finding the k-best Bayesian Network Structures

In previous sections, we mentioned that the optimal model selection is an NP-hard problem,

as the number of possible model structures is super-exponential with respect to the number of

variables. Thus, in existing applications of Bayesian network classifiers, heuristic or approxi-

mate methods are employed to find the models which are usually suboptimal. Silander et al.

proposed a dynamic programming (DP) algorithm which is capable of finding the globally op-

timal Bayesian network in O(n2n) time [53]. Tian et al. [58] extended the DP algorithm to find

the top k Bayesian network structures. They demonstrated the applicability of the algorithm

on networks with up to 20 variables. One nice feature of their method is that the estimation

accuracy can be improved monotonically by spending more time to compute for larger k.

In this study, we employ this algorithm to select the k-best Bayesian network structures. We

then estimate the CPDs using Bayesian Estimation for each of the k-best network structures

that result in k discrete Bayesian network classifiers. Afterwards, we build our BNMA classifier

by averaging the prediction results over the k-best Bayesian network classifiers.

In detail, we use 12 observed feature variables from the KDD Cup 99 dataset and 1 unob-

served variable representing intrusion or not intrusion. We get the k-best Bayesian Network

structures by running the software tool called KBest [58] which is used to compute the posterior

probabilities of features by Bayesian model averaging over the k-best Bayesian networks. Inside

of this tool package, it computes the local scores for all the families of each variable. With a

selected k value, the software tool of KBest takes a file of data records as input and outputs

the k best network structures and lists the estimated posterior probabilisties for each of the k

best networks based on the input data.

www.manaraa.com

14

2.3 Description of NSL-KDD Dataset

In previous IDS research, KDD Cup 99 dataset has been widely used to help build and

evaluate these systems [4] [63] [3] [17]. This database contains a standard set of data to be

audited, which includes a wide variety of intrusions simulated in a military network environ-

ment. However, KDD Cup 99 has two major issues that highly affect the assessment of the

performance of evaluated systems [57]. The first deficiency in KDD Cup 99 dataset is the huge

number of redundant records in the training dataset. This deficiency will cause learning algo-

rithms to be biased towards more frequent records. The second deficiency is that the existence

of repeated records in the test set will cause the evaluation results to be biased towards favoring

the methods with better detection rates on frequent records.

In our experiment, we use the NSL-KDD [57] dataset, a new version of KDD Cup 99

dataset consisting of selected records of the complete KDD Cup 99 dataset with redundant and

repeated records removed. As can be seen from the literature [57], the original KDD Cup 99

dataset is skewed and unproportionately distributed, training and testing directly on the KDD

Cup 99 dataset can result in relatively high accuracy rate for different methods, making it

difficult to effectively compare different classifiers. Using this NSL-KDD dataset for evaluation

is more objective and judicial as it does not suffer from either of the two problems mentioned

above. The NSL-KDD dataset contains a training set with 125,973 records and a testing set

with 22,544 records. Each of the datasets contain 41 attributes describing different features of

the connection and a class label assigned to each either as attack or as normal.

2.4 Construction and Evaluation of BNMA Classifier

In this section, we introduce how we construct and evaluate the BNMA classifier. Figure 2.2

illustrates the process from data processing to classifier training and evaluation. The whole

process is elaborated in the following steps:

1. Download NSL-KDD dataset and select a subset out of a total 41 features as the variables

for classifier building.

www.manaraa.com

15

2. Randomly sample partial datasets of varying sizes from the overall NSL-KDD training

dataset as the training sets. The whole NSL-KDD testing dataset is then used as the

testing set.

3. Perform data discretization on the continuous features in training and testing datasets

using the information-preserving discretization method.

4. Find the k-best Bayesian network structures using the training dataset, and estimate

the CPDs for each networks using Bayesian Estimation. This results in k independent

Bayesian network classifiers.

5. Combine the k Bayesian network classifiers into a Bayesian classifier using BMA.

6. Apply the Bayesian classifier to the testing dataset, calculate the accuracy and Area

Under ROC (AUC).

7. Conduct four groups of experiments by repeating steps 2-6 using different training sets.

The results for each classifier and each configuration of different size are then averaged

over those four groups of experiments.

In the upcoming subsections, we give details on the process of feature selection, data dis-

cretization, and classifier training and evaluation.

2.4.1 Feature Selection

Feature selection is an indispensable pre-processing step when training a huge dataset with

many features. Extraneous features not only add burden to the computation but also confound

the detection process. The NSL-KDD dataset contains 41 features, some of which may be

redundant and contribute less than the others to the detection process. Feature selection and

feature deduction have been a very popular topic in intrusion detection field for identifying

important input features to build computationally efficient and effective IDS. Singh & Silakari

[54] proposed an ensemble approach for feature selection of the Cyber Attack dataset. Chebrolu

et al. [12], Kayacik et al. [30] and Olusola et al. [46] specifically analyzed the feature relevance

on the KDD Cup 99 dataset. In [12], Markov blanket model was used to select the feature

www.manaraa.com

16

Figure 2.2: Flowchart illusrating the training and evaluation of BNMA classifier

set and it was shown that a selected set of 12 features can achieve better predictive accuracy

than when the whole set of 41 features is used. Our main focus in this paper is to compare the

methods based on the same datasets with the same feature set, rather than to study the KDD

data. And we are also particularly interested in studying their performance using a carefully

selected representative subset rather than the full features. Therefore, in our experiments we

used the 12 features suggested in [12]. Those features are described in the following Table 2.1.

2.4.2 Data Discretization

As shown in Table 2.1, some of the selected features take continuous values. However,

current implementation of Bayesian network classifiers can only handle discrete values. Thus,

continuous features need to be discretized before being used to build a classifier. On the other

hand, discretization can often make continuous features easier to understand and interpret, and

produce faster learning models. Many learning models have been shown to perform better by

www.manaraa.com

17

Table 2.1: List of Selected Features

FEATURE
NAME

DESCRIPTION TYPE

service network service on the destination, e.g.,

http, telnet, etc.

Discrete

src bytes number of data bytes from source to

destination

Continuous

dst bytes number of data bytes from destination

to source

Continuous

logged in 1 if successfully logged in; 0 otherwise Discrete

count number of connections to the same host

as the current connection in the past

two seconds

Continuous

srv count number of connections to the same ser-

vice as the current connection in the

past two seconds

Continuous

serror rate % of connections with errors (refer to

the same-host connection)

Continuous

srv serror rate % of connections with errors (refer to

the same-service connection)

Continuous

srv diff host rate % of connections to different hosts Continuous

dst host count sum of connections to the same desti-

nation IP address

Continuous

dst host srv count sum of connections to the same desti-

nation port number

Continuous

dst host diff srv rate the percentage of connections to differ-

ent services, among the connections ag-

gregated in dst host count (32)

Continuous

www.manaraa.com

18

discretizing continuous features [36]. Based on our knowledge, there are two types of commonly

used discretization methods in many of the IDS [37] [46] [63], that is, the unsupervised dis-

cretization algorithms, e.g., equal intervals, equal frequencies, and the supervised discretization

algorithms, e.g., maximum entropy discretization, χ2 discretization, CAIM, etc. In our exper-

iment, we adopted a discretization algorithm named CACC [59], which was a a static, global,

incremental, supervised and top-down discretization algorithm. This information-theoretic al-

gorithm extended the idea of contingency coefficient, combined with the greedy method, and

was empirically shown to be promising in terms of accuracy, execution time, etc. Data dis-

cretized using such discretization scheme have much less information loss, thus better represent

the distribution of original data compared to the ones discretized using other unsupervised

discretization methods.

2.4.3 Classifier Training and Evaluation

One purpose of this study is to evaluate the performance of various classifiers with respect

to varying sizes of the training dataset. Thus, we prepare several training datasets containing

500, 1000, 2000, 5000, 10000, 20000, 30000, 40000 records, respectively. We train and build

a Bayesian classifier from each of the training sets by BMA over the k-best Bayesian network

classifiers as described in Section 2.2. For each training dataset, we build the Bayesian classifier

by setting k to various values. We then evaluate the performance of the classifier with respect

to these different k values. When k = 1, the classifier is equivalent to a single Bayesian network

classifier. The larger k is, the more models are employed for model averaging, which potentially

leads to better predictive power.

We evaluate all classifiers on the same testing dataset. We compute the accuracy as the

percentage of correctly classified records. Note that this is a binary classification problem, i.e.

an attack or normal. A record is classified as an attack if the conditional probability of being

an attack given the observation of other features is greater than 0.5; it is classified as normal

otherwise. In addition to accuracy, we compute AUC as the area under the Receiver Operating

Characteristic (ROC) curve, which is an estimate of the probability that a classifier will rank

a randomly chosen positive instance higher than a randomly chosen negative instance. Since

www.manaraa.com

19

AUC does not depend on the classification threshold used, it is widely recognized as a better

measure than accuracy, which is based upon a single classification threshold.

For comparison, we also build Naive Bayes classifiers and Bayesian network classifiers, which

are selected by using the greedy hill-climbing search method. The training and testing processes

of this two classifiers are executed in the open source software of Weka which is a collection

of machine learning algorithms for solving real-world data mining problems. Weka is written

in Java and runs on almost any platform. The algorithms can either be applied directly to a

dataset or called from user’s own Java code. When we use Weka to train and test the Naive

Bayes classifiers and Bayesian network classifiers, we just need to pass a file of training records

and a file of testing records separately to it and Weka gives detection accuracy and AUC result

based on the input training and testing dataset. We implemented our algorithm of BNMA

classifier and added it to Weka as a new algorithm. With the training dataset, testing dataset

and k-best network structures given by KBest software as input, our implemented classifier can

output the detection accuracy and AUC of using BNMA over the input dataset.

As described before, we repeated the experiment four times on different training and testing

data sets with each training size and k value. We reported the average accuracy and AUC over

the four trainings for each training size and k value. Considering the records of training dataset

and testing dataset are selected randomly from NSL-KDD dataset, the averaged result over

four experiments is more reliable and objective than the result based on one experiment.

2.5 Experimental Results

Figure 2.3 compares the detection accuracy of Naive Bayes (NB), Bayes Network built using

greedy search (BN-Greedy) and the BNMA (k = 1) by size of the training dataset. First, we

observe that the accuracy is approximately a non-decreasing function of training sample size.

This is understandable since a larger training sample usually produces a classifier with better

predictive power. The accuracies of NB and BN-Greedy are comparable to each other, while

the BNMA classifier built using the best Bayesian network (k = 1) is significantly better than

the two classifiers. Further, the BNMA (k = 1) trained classifiers using a small training set

(2000) even outperforms the NB and BN-Greedy classifiers trained using a very large training

www.manaraa.com

20

set (40000). The improvement is also significant when AUCs are compared (see Figure 2.4).

This indicates that the BNMA classifier can achieve reasonably good predictive power even

when a small training dataset is used.

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

0.5k 1k 2k 5k 10k 20k 30k 40k

A
c
c
u
r
a
c
y

Size of training data set

Naive Bayes
BN(Greedy)
BNMA(k=1)

Figure 2.3: Comparison of detection accuracy by size of training set

In another set of experiments, we evaluate the BNMA classifier with respect to various k

values. Table 2.2 compares the detection accuracy by k value and training set size. Table 2.3

compares the AUC by k value and training set size. It is shown that with the increase of k,

both accuracy and AUC increase. AUC has a more obvious increase than accuracy. However,

this improvement is not as significant as that in comparing BNMA (k = 1) with NB and BN-

Greedy. The most significant improvement is in Table 2.3, for sample size 500, where the AUC

jumps from 0.9615 for k = 1 to 0.9733 for k = 200. With the increase of sample size, the

improvement decreases. This demonstrates that the BNMA is particularly effective on small

sample sizes.

To investigate why the predictive power does not change very much with respect to the

variation of the k value, we examine the structures of the top 10 networks produced using a

training set with size 10000. Figure 2.5 illustrates the consensus structure for the 10 structures.

www.manaraa.com

21

Table 2.2: Accuracy Comparison by k Value and Size of Training set

Training Set Size k = 1 k = 10 k = 50 k = 100 k = 200

500 92.40% 92.40% 92.40% 92.40% 92.40%

1000 95.43% 95.43% 95.43% 95.56% 95.43%

2000 93.92% 93.97% 93.97% 93.97% 93.97%

5000 96.06% 96.14% 96.11% 96.14% 96.16%

10000 96.43% 96.43% 96.44% 96.47% 96.46%

20000 96.86% 96.86% 96.87% 96.87% 96.87%

30000 96.86% 96.86% 96.85% 96.86% 96.92%

Table 2.3: AUC Comparison by k and Size of Training set

Training Set Size k = 1 k = 10 k = 50 k = 100 k = 200

500 0.9615 0.9706 0.9733 0.9733 0.9733

1000 0.9705 0.9718 0.9728 0.9728 0.9730

2000 0.9738 0.9738 0.9740 0.9744 0.9745

5000 0.9895 0.9898 0.9898 0.9900 0.9900

10000 0.9905 0.9905 0.9905 0.9908 0.9908

20000 0.9928 0.9928 0.9928 0.9928 0.9930

30000 0.9933 0.9933 0.9933 0.9933 0.9933

www.manaraa.com

22

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

0.5k 1k 2k 5k 10k 20k 30k 40k

A
U
C

Size of training data set

Naive Bayes
BN(Greedy)
BNMA(k=1)

Figure 2.4: Comparison of AUC by size of training set

It is surprising that all 10 structures share the same skeleton with minor differences in the

direction of the edges. This indicates that the top structures represent similar distribution, and

thus make similar predictions for new data points. We can speculate that the top 200 structures

may have very similar structure. For comparison, we also depict the Bayesian network structure

learned using greedy hill climbing search method in Figure 2.6. It is easily observed that this

structure is significantly sparser (fewer edges) than the consensus structure in Figure 2.5. This

explains why the structure selected with heuristic method is suboptimal, because it fails to

identify many important dependencies among the feature nodes which can be captured by our

method of using BNMA classifier. It also explains why the best Bayesian network (k = 1) has

significantly better predictive power than the BN-Greedy classifier.

2.6 Conclusion and Future Work

In this study we proposed a Bayesian classifier using BMA of k-best Bayesian network

classifiers, called BNMA classifier, for intrusion detection. Previous IDS using Bayesian network

classifier has two problems. First, the Bayesian network structure is selected using heuristic

www.manaraa.com

23

Figure 2.5: A consensus network built from the top 10 networks trained on sample size

10000. The correspondences between the nodes and the features are : 0-service; 1-

src bytes; 2-dst bytes; 3-logged in; 4-count; 5-srv count; 6-serror rate; 7-srv serror rate; 8-

srv diff host rate; 9-dst host count; 10-dst host srv count; 11-dst host diff srv rate; 12-class

(intrusion or not intrusion). Note that the class variable is shadowed. Directed edges existing

in all 10 structures are depicted as solid arrows. The set of edges that exist in all structures

but with various directions are depicted as solid lines.

Figure 2.6: The Bayesian network trained on sample size 10000 using greedy hill climbing

search method. The correspondences between the nodes and the features are the same as those

in Figure 2.5.

www.manaraa.com

24

methods, which usually return suboptimal models. Second, previous classifiers are trained and

evaluated using a very large training dataset, which is usually hard to collect within a short

time period. In this study, we used a DP algorithm to find the globally k-best structures and

used them to build a Bayesian classifier by BMA. We showed that the BNMA classifier has

significantly better predictive power than Naive Bayes and the Bayesian network classifier built

using heuristic method. Even the classifier trained using a very small dataset outperforms the

other two classifiers trained using a very large dataset. We then conclude that our BNMA

classifier is particularly effective in detecting intrusions when only a few training records are

available. This is very valuable since prompt detection of intrusion is of significant importance

in such an era of rapidly growing Internet activities.

We also show that with the increase of k, i.e., more Bayesian network classifiers are used

for model averaging, the better predictive power it can achieve. However, this improvement

is not that significant, since the top structures actually share a very similar structure. This

means the problem size (12 feature variables) is still not that large compared to the sample

sizes examined. One question that users may ask is, what is the k value we should use? The

answer is the larger, the better. However, it takes more time to train and integrate over larger

number of classifiers. In this study, we consider 12 feature variables and k = 100 is already

enough. The k value that should be selected depends on the problem size, i.e., the number of

feature variables used to build the model. Thus, our future work is to select a larger set of

feature variables for model building. Since Bayesian network is able to inherently do feature

selection through its conditional dependency assertions, using a larger set of features should

not significantly impact the performance. However, with a larger set of feature variables, it

may need larger k, i.e., integrating over more models to achieve reasonably good predictive

power.

Another area for future work is based on the observation that intrusions happen in dynamic

environments, thus they themselves could be time-series data. An et al. [5] proposed to use

dynamic Bayesian networks to model the temporal environment. However, the problems faced

by the static Bayesian network classifier persist in dynamic Bayesian networks. Thus, it is a

challenge to perform model averaging in the temporal environment setup.

www.manaraa.com

25

In summary, since it uses less data while still achieving comparable or better predictive

power, our BNMA classifier can save a huge amount of time on collecting training data records

so that it can catch the intrusion more promptly and more accurately to avoid loss due to

intrusion.

www.manaraa.com

26

CHAPTER 3. SITUATIONAL DATA FOR INTRUSION DETECTION

SYSTEM

Abstract

Intrusion detection is a research topic of great importance, especially for web-based appli-

cations, whose broad usage at the same time makes themselves attractive targets for malicious

attackers. Meanwhile, applications of many emerging new web techniques (e.g., Web 2.0,

HTML5, and cloud computing, etc.) add more challenges to intrusion detection. One signifi-

cant issue of building Intrusion Detection System (IDS) is to find an efficient and informative

training data set. In this paper, we proposed a Situational Data Model which is represented by

a sequence of observed situations. Our main contributions can be summarized as follows. First,

we designed Situational Data Model that has better data structure and is more informative.

Each data record is a sequence of situations collected in chronological order. At each time

point, the situation contains a series of information including the context and action for the

possible intrusion, and potential intruder’s desire. Different from action sequences data and

state sequence data, Situational Data makes the training process be able to be performed over

the sequence of punctuated desires which can be inferred from the sequence of actions and con-

texts. The valuable footprints of transition from one situation to another are well captured by

this data collection mechanism. Second, we collected the training data from a real web applica-

tion system Cooperative Research Environment(CoRE) which is developed for research use by

Software Engineer Research Group in the Department of Computer Science at ISU. Our train-

ing data set provides valuable evaluation reference for dynamically intrusion detection system

such as Hidden Markov Model based IDS. Third, we compared our Situational Data against

the data comprised of action sequences data by employing the Hidden Markov Model, and the

www.manaraa.com

27

result approves that Situational Data with desires can bring better classification accuracy and

ROC curve.

Key Words: Intrusion detection system, Situ, Hidden Markov Model, detection accuracy,

ROC

3.1 Introduction

In this chapter we introduce the Situational Data Model for building dynamic intrusion

detection system. This Situational Data Model is based on the Situ framework introduced

by Chang et al. [11], and is defined by situational data consisting of environmental context

information, activities, and inferred desires.

Traditionally, there are two categories of intrusion detection systems, i.e., either misuse-

based or anomaly-based. A misused-based intrusion detection system includes a number of

attack descriptions or signatures trained from abnormal data. It gives intrusion alert whenever

a stream of audited data matches with an attack model. On the other hand, an anomaly-

based intrusion detection system relies on models trained from the normal data. Deviations of

audited data from established models are interpreted as potential attacks [42]. Training data

are usually collected from network, operating systems, or application log files. Various data

sets are used in building all different kinds of intrusion detection systems. Through training

on historical data, a model explaining the relationship between intrusion and selected features

can be built. The established model is then used to predict outcomes for future audited data.

For instance, Kruegel and Toth [39] created a decision tree to detect malicious events, based

on a set of signatures of data constraints. Altwaijry [2] developed a näıve Bayesian classifier

to identify possible intrusions. To evaluate an intrusion detection system, the public KDD

Cup 1999 dataset [31] has been widely used by the researchers for experiments in the literature

[14, 63]. This dataset contains 41 feature variables and up to 4 million staggering records. Also,

the feature variables of the KDD Cup 1999 dataset include network traffic information such as

src bytes (number of data bytes from source to destination), dst bytes (number of data bytes

from destination to source), and protocol type (type of protocol), etc. The classical approaches

www.manaraa.com

28

typically first train a model based on selective features using a certain amount of data, then

predict a future data record to be intrusive or normal based on the trained model. However,

one common limitation of all those training data is that they only have static network traffic

data, and do not take into account the dynamic nature of many features that may change over

time. This may be partly due to that their feature values were collected statically without

any time stamp. Therefore, they treat all different features being time-independent and ignore

potential temporal relationships between the same features at different time points. In fact, the

dynamic transitions of features’ value in chronical order often carry important information, and

can be very valuable for detecting the intrusions. For example, under statistic data structure, a

potential anomalous behavior that repeatedly have massive amount of data bytes flowing from

source to a destination at different time periods may not be distinguishable from a normal

behavior with similar situation at a single time point. In this case, it may be very challenging

for us to catch the intrusion if we just model the static context information in spite of the

features being time dependent.

Dynamic features have been shown to be more efficient than static features. In fact, some

researchers have been using sequential data for training intrusion detection models. For in-

stance, Ariu et al. [7] designed the intrusion detection system HMMPayl, which uses the Hid-

den Markov Model to analyze the HTTP payload, to detect attacks against Web applications.

Those authors expressed the payload as a sequence of bytes and showed that the HMMPayl

is very effective against attacks like Cross Site Scripting [22] and SQL-Injection [35], whose

payload would not be significantly different from that of normal traffics. On the other hand,

the detection system proposed by Chen et al. [13] analyzed multiple logs from cloud to extract

the intention of the actions recorded in the logs. In their work, the Hidden Markov Model

was adopted to model the sequence of actions performed by hackers. Such stealthy events in

a long time frame is significantly more useful for training the state-aware model. Besides, in

[27], sequences of systems calls were used to build the classification schema. However, all those

sequential features and data used in their IDS training do not have the human internal mental

states (desires) involved. Human desires which could be driven from other features are more

correlated to or more representative of human’s intention than those features. In this thesis, we

www.manaraa.com

29

propose a situational data model with actions, contexts of target web application system and

desires of human. We collect and parse the data following the Situ framework [11]. That is, we

represent each data record as a sequence of situations, of which each contains three components

– desire, action, and context. We then compare Situational Data Set with action-only sequences

dataset using the Hidden Markov Model. Our experiment result shows that situational dataset

is more effective by having the training process guided by human desires.

The rest of this chapter is organized as follows: Section 3.2 introduces the related work

Hidden Markov Model and Situ Framework. Section 3.3 describes the Situational Data Model

and the process of Situational dataset collection. Section 3.4 gives our experiment design and

results. Finally, we conclude in Section 3.5 with a summary of the current work and a discussion

of potential future work.

3.2 Related Work

3.2.1 Hidden Markov Model

A hidden markov model (HMM) is a statistical model representing probability distributions

over a sequence of observations, say {x1, . . . , xT }, accompanied by hidden states {y1, . . . , yT }

[21]. As a simple dynamic Bayesian network model, a HMM can be illustrated by Figure 3.1, and

there are two defining properties: hidden, in the sense that all observations {xt, t = 1, . . . , T} are

assumed to be generate by some process whose states {y1, . . . , yT } are hidden; Markov property,

in the sense that the distribution of those hidden states have markov property, i.e., at any time

point t, the distribution of yt given all its history y1, . . . , yt−1 is equivalent to that of yt given yt−1

only. In addition, the conditional distribution of any the observations xt given all other nodes

of the graph is the same as its conditional distribution given its immediate parent yt. Bringing

those markov properties together, the joint distribution of (X,Y) = (x1, . . . , xt, y1, . . . , yt) can

be written as

p(X,Y) =
T∏
t=1

p(xt | yt)p(yt | yt−1),

where we adopt the convention that y0 represents null status with no information.

www.manaraa.com

30

Figure 3.1: Hidden Markov Model

HMMs have been widely used in the literature for researches in different disciplines, e.g.,

economics, computer science, etc. HMM is also very often used in intrusion detection [7, 13, 27].

In applications, typically a parametric model is assumed for the joint distribution of p(X,Y)

such that p(X,Y) = p(X,Y ; θ), and the goal of learning task is to obtain an estimator for

θ based on observed outcomes X = (x1, . . . , xT). Intuitively, because Y = (y1, . . . , yT)

are hidden, i.e., unobserved, θ may be estimated by the marginal distribution of X, i.e.,

p(X; θ) =
∑

y1,...,yT
p(X,Y ; θ). However, obtaining the marginal distribution may be chal-

lenging in practice and computation can be intensive using this brute-force approach. Never-

theless, in the literature efficient computational algorithms are available, e.g., E-M algorithm

based Baum-Welch method [45], among others. In our discussion here, we use HMM model as

a candidate method for comparing the effectiveness of Situational Dataset with another dataset

in training Intrusion Detection System and classifying intruders and normal users. Details re-

garding how HMM is applied in our setting and how HMM is to be combined with the Situ

framwork will be introduced in the upcoming discussions and section.

www.manaraa.com

31

Figure 3.2: Situ Framework

3.2.2 Situ Framework

The data records used for training and prediction is modeled following the Situ Framework.

Situ Framework [11] originally provides a situation-theoretic approach to human-intention-

drive service evolution in context-aware service environments. The situation defined in this

framework is rich in semantics and useful for capturing human thinking and behavioral patterns,

which, in turn, help developers to construct the intention specification. Figure 3.2 from [11]

shows the situation-theoretic intention-driven framework for service evolution at runtime.

In Situ framework [11], a human intention is defined as temporal sequence of situations to

achieve a goal, which is described as I = seq(S1, S2, . . . , Sk) where S1, . . . , Sk are goal-directed

situations for the goal g. A situation at time t is expressed as situation (t). It is a triple

{d,A,E} in which d is the predicted users desire, A is a set of the users actions to achieve a

goal which d corresponds to, and E is a set of environment context values with respect to a

subset of the context variables at time t. As shown in Figure 3.2, an intention plays a proactive

role in interpreting human actions, which are the key component connecting desires and specific

contexts. The contexts are derived from sensing the entire environment surrounded by a user

www.manaraa.com

32

being observed in a service system. This type of contexts such as time, location and so on is

helpful in understanding the triggers and effects of human’s actions. The actions are derived

from human behaviors which interact with contexts bidirectionally. Situ is a higher level formal

mechanism to understand human intention change by the situations.

3.3 Situational Data for Intrusion Detection

3.3.1 Definition of Situational Data Model for Intrusion Detection

In previous intrusion detection researches, the KDD Cup 1999 dataset has been widely used

to build and evaluate the Intrusion Detection System [14, 63]. The KDD Cup 1999 dataset [57]

include many relevant features such as connection, traffic, and content, etc. However, all of

those features are static, in that no time stamps are associated with those features that could

potentially change over time. Therefore, a potential layer of correlation or connection between

those features is missing. In other words, features collected at two different time points, say t1

and t2, are treated as two entirely independent records regardless of their time stamp. We call

those type of data as static data. In a static data model, the over-time trajectory of features

are not collected thus cannot be used in training or utilized to predict audited data in the

future.

When only static data are used for training, it is very difficult to detect malicious attacks

that have similar network traffic features as normal behaviours, e.g., SQL injections. This

naturally motivates making use of training data that can capture not just statistic features but

also dynamic characteristics. For instance, sequential data that are collected with time stamps

would help counter this challenge. In fact, sequential data have already been frequently used

in the literature. For example, Ariu et al. [7] defined each data record as a sequence of payload

bytes length collected at different time points. While this data model captures the payload

bytes length in a sequential manner for intrusion detection, it is, however, not effective for

detecting attacks that do not cause significant payload changes over different time points. For

illustration, we can think of a simple example where a brute-force type attack is considered.

Specifically, suppose an attacker repeatedly tries to log-in by guessing passwords without being

www.manaraa.com

33

successful. In this case, the payload bytes length at each of those attempts will not differ much

from each other, thus the system will probably fail to detect this attack.

Given reasons above, we believe that it can be more effective for intrusion detection if we

consider not only the change of general context, e.g., payload byte length, but also other factors

such as sequences of users’ behaviors and thinking patterns. Following this thought, we build

our Situational Data model based on the Situ framework [11]. According to the correlations of

intention, desires, context, and actions described in Situ, we design our Situational Data model

with three layers as shown in Figure 3.3. Specifically, let t1, . . . , tn be data collection time points

in natural chronical order. The first layer represents action and context sequences, denoted

by [A1, C1], . . . , [An, Cn]. Then the second layer captures the desire sequence, d1, . . . , dn. The

third layer gives the temporal intention sequence tempI1, . . . , tempIn. A user’s footprint left

in the system is expressed as a sequence of situations, say, S1, . . . , Sn. Each situation St at

time point t consists of [At, Ct], dt and tempIt, where [At, Ct] is the set of actions and context

observed at time t, dt is the user’s desire on the system at time t, and tempIt is a quantitative

value indicating the degree of the segmental attacking intention for the desire at time t. A

user’s intention is then composed of a sequence of situations.

For intrusion detection purposes, one of the key components of the Situational Data Model is

the desire layer which plays a central role as a bridge in the process of inferences in classification.

It helps find hidden relationships among those trivial context and behavior information, then

help correlate them with users’ temporal intentions. It guides the predictive model with clearer

direction on classifying intruders and normal users. When attackers have malicious intentions,

they tend to plan and execute the attack step by step. Using a metaphor to illustrate the

relationship among actions, environment context, human desires, and intention in a system, we

can think of the preparations a smart robbery might do after he decides to rob. The intention

of rob drives him to have some temporal desires such as avoiding to be recognized, avoiding

to be recorded by camera, confirming no polices around, and so on. Those temporal desires

then drive him to have some actions and context information like wearing sun glasses, wearing

a mask, observing possible cameras, and so on, leading to a abnormal sequences of actions and

environment context. The same for attacking computer systems, a user with malicious intention

www.manaraa.com

34

Figure 3.3: Situational Data Model

must have attacking-driven desires at some of the time points in the situation sequence. Those

desires will then drive the attackers to learn vulnerabilities and information about the target

system before he is able to intrude eventually. During the process of learning vulnerabilities

and trying attack, the attackers would have abnormal behaviors, which make the environment

context different from that of normal users’.

To use this Situational Data Model, we need to train two prediction models. The first model

is a desire model for predicting the desire sequence based on action and context sequences. The

other model is an intention model for predicting temporal intention by desire sequences. When

IDS is used to predict and detect intrusion, firstly we treat action and context sequences, i.e.,

[A, C], as observed data and desire sequences as hidden state data to be predicted. Secondly,

the predicted desire sequences from the desire model will be used as input of the intention

model for predicting the temporal intention sequences. Finally, the trained IDS can classify an

intention to be normal or malicious according to the values of the temporal intention sequence

tempI1, . . . , tempIn.

www.manaraa.com

35

3.3.2 SQL Injection

In this subsection, we briefly describe one of the intrusion techniques used by assumed

intruders in our data collection platform, i.e., CoRE. We explain how SQL injection happen

since it is most frequently used by our assumed intruders.

In web based applications, when normal users submit their input information on the client

side, the input value will be combined by a SQL statement written by programmers. For

instance, suppose a normal user enters marcus as the username and secret as the password in

the log-in page from the client side. The web-based application will interpret it in the way that

is described by the following SQL statement:

SELECT * FROM users WHERE username = ’marcus’ and password = ’secret ’

Subsequently, this statement will search the user database and retrieve all relevant information

that matches the user name marcus and password secret.

When a malicious user intrudes the system using the SQL injection technique, the main

idea is to bypass the above user name and password check by injecting some input values

that can turn the above concatenated SQL statement into an always-true statement regardless

of the actual user name and password provided. This is because the website log-in program

is written in such a way that it interprets log-in information by combining the phrases from

“username” and “password” fields in the SQL statement, in the same way as the example

shown in the previous paragraph. As a result, because the SQL statement is true, the log-in

system will then grant access to the intruder. For example, suppose an attacker knows the

database administrator’s user name, admin. Then the attacker may capitalize on this and use

this information in the log-in page by entering the username admin’–. This input will then

generate a SQL statement as follows:

SELECT * FROM users WHERE username = ’admin’- -’ and password = ’anything ’

Note the sign ′ − −′ is an annotation mark in SQL syntax, thus all the following statement

after the ′ − −′ will be regarded as potential annotations of the SQL statement. As a result,

www.manaraa.com

36

the above SQL statement is actually equivalent to the following statement:

SELECT * FROM users WHERE username = ’admin’,

which is true as admin is an admin’s username as aforementioned. In other words, no matter

what value of password is provided in this case, the SQL statement is always true and the

program will then respond with information associated with the username admin. Meanwhile,

this also means that an attacker can use any username from the database and apply this

technique to bypass the log-in page.

According to this SQL injection attack technique, the actions users did on the web site

usually cause some database operations like select, delete, and so on, in the back end side

of the application. The input information are actually used as parameters for the back end

operation. The response type of URL request is the feedback that we got after the back end

operation is done. We gathered those information on time stamps for our Situational Data Set

which helps us to find the real intention of the users.

3.3.3 Collection of Situational Data for Intrusion Detection

We collect our Situational Data Set based on the real dynamic web application system, Co-

operative Research Environment (CoRE), which is used for sharing published and unpublished

internal research papers, comments and ideas, etc. This system is modified from an open-

source web application called MyReview [48] by the Software Engineer Lab in the Department

of Computer Science at Iowa State University. The CoRE is used as an online library system

by scholars at Iowa State University. Upon logging in the system by assigned user name and

password, a user is able to upload papers, download papers, write comments, view comments,

and search by key words, etc. A sketch of different functionalities of this system is displayed

in Figure 3.4.

Before the experiment was conducted, an approval was obtained from our Institutional

Review Board (IRB) due to its involvement of human subjects. Our experiment complies

with the federal regulations set forth by the Department of Health and Human Services and

the Food and Drug Administration. In addition, all principal investigators in this experiment

www.manaraa.com

37

Figure 3.4: Cooperative Research Environment System

took the National Institutes of Health (NIH) Web-based training course Protecting Human

Research Participants before their participation in the experiment. A total of approximately 120

participants, including normal users and assumed intruders, have contributed to this experiment

study, where normal users used the CoRE system normally, and assumed intruders performed

as intruders to attack the system using different attacking skills.

We collect the participants’ actions, e.g., clicking different functional buttons and URLs,

and the context information of the system, e.g., input information in text box of the web site

and HTTP response type after sending a URL request. To capture users’ actions and related

context information of the system, a monitor program is embedded in the CoRE system as

a sensor. We also collect users’ desires each time when they have actions on the system.

The participants’ desires are collected by the “think-aloud” method, which is a questionnaire

embedded in the system. Participants choose or enter their desires at different time points

during the process of using the system. When the Situational Data Model is used in practice,

www.manaraa.com

38

those desires cannot be collected from users thus they need to be manually labeled. In this data

collection, we manually label temporal intentions based on the actions and context information.

As shown in the Table 3.1, we collected data records, including actions, contexts, and

desires, at 8645 different time stamps, of which 6880 were generated by normal users and 1765

were generated by assumed intruders. Meanwhile, if we look at those records from situation

sequence point of view, there are a total of 462 sequences, consisting of 365 normal sequences

and 97 malicious sequences.

Table 3.1: Data summary

Normal Malicious Total

Number of Records 6880 1765 8645

Number of Sequences 365 97 462

On the other hand, in terms of numbers of distinct values, our data contain 66 possible

actions, 3 types of URL request errors or exceptions, 8 types of information inputs, 33 types

of desires, and 7 possible temporal intention values. The malicious intention set includes SQL-

injection attack, unauthorized url retries, authentication attack, etc. All possible values of

intention, temporal intention, and contexts are given in the following:

I = {malicousI, normalI}

tempI = {0, 1, 2, 4, 6, 7, 10}

Context = {No Error, Error Remind, Error Report, Legal Input, No Input,

Legal Input, Sql Input, Inserted Link, Url Action, UrlGuessInput, Url PaperID}.

All possible values of actions and desires are shown in Table 3.2.

For illustration purpose, let us consider a simple example of situation sequences presented

in Table 3.3, which is a subset of a user’s records in our collected data from CoRE. Each

row of this table is a situation, including values of action, context, and desire at a time point

t (t = 1, . . . , 10). The user behaved normally in situations S1 and S2. From situation S3 to

situation S6, the user made two attempts logging into the system illegally using SQL injection

techniques. Following that, starting from situation S7 until situation S10, the user tried to

www.manaraa.com

39

Table 3.2: Possible values of action and desire

Action Desire
clickMenuMyProfile clickSendInstruction Test
clickMenuHome clickMenuConfigSystem ViewAllPapers
clickMenuSignin clickUploadPaper Log In
clickSignup clickDownloadAllPapers ViewAPaperInfo
clickLogin clickSubmitEditPaper DownloadPaper
clickMenuListUsers clickLinkPrintMyComments ViewMyPapers
clickLinkModify clickSubmitPreQuestion Get User Names
clickModify clickCancelMyProfile UploadPaper
clickEditMyProfile clickHideSelection ViewProfile
clickUpdateMyProfile clickShowSelection ViewHomepage
Null clickCancelSubmitComment SubmitComment
clickSkipPreQuestion clickCancelUploadPaper View All Papers
clickMenuAllPapers clickFilter FilterPapers
clickRemoveCommentMyPapers clickPaperInfosMyComments ViewMyComments
clickOkRemoveComment clickPaperInfosMyPapers ViewMyCommentInfo
clickMenuMyPapers clickDownloadMyPapers ViewMyPaperInfo
clickMenuMyComments clickSubmitEditComment EditPaper
clickEditPaperMyPapers clickEditCommentMyPapers EditComment
tryURL clickCancelPostQuestion Guess Password
clickPaperInfosAllPapers clickCancelEditPaper EditProfile
clickEndSession clickCancelEditComment RemoveComment
clickMenuSignout clickEditCommentAllPapers Sign Up
clickEditCommentMyComments clickSubmitMyProfile Register Illegal User
clickLinkRemoveMember clickCommentMyPapers Skip Login
clickOkRemoveMember clickICSE Modify User Information
clickMenuUploadPaper clickFairUse Access Page Unauthorized
clickCommentUploadPaper clickEditPaperAllPapers Search Administrator Content
clickSubmitComment click(Link EditPaper) Access Paper Unauthorized
clickSubmitCommentAllPapers clickEditPaperMyComments Remove User
clickLinkAddNewAccount clickDownloadMyComments Create User
clickAddNewAccount clickSendPsw SendMaliciousLink
clickNoRemoveComment clickRemoveCommentMyComments clickLinkPrintMyComments
clickLinkSendInstruction clickContact clickSubmitComment

www.manaraa.com

40

modify the database by removing certain users and tried to send malicious links to the existing

users in the database. This is an intrusion example with very obvious intrusion intention

that could be easily detected. For many other smart intruders, we may not be able to collect

situation sequences with such obvious patterns. For instance, they may switch frequently

between behaving normally and abnormally alternatively to hide their intrusion intentions.

Table 3.3: An example sequence of Situational data set

Situ Action Input Error Type Desire tempI

S1 clickSkipPreQuestion No Input No Error Test 0

S2 clickMenuSignin No Input No Error Login 0

S3 clickLogin Sql Input Error Remind Skip Login 1

S4 clickLogin Sql Input Error Remind Skip Login 2

S5 clickLogin Sql Input Error Remind Skip Login 4

S6 clickLogin Sql Input No Error Skip Login 7

S7 clickLinkRemoveMmber No Input No Error Remove User 1

S8 clickOkRemoveMember No Input No Error Remove User 2

S7 clickLinkRemoveMmber No Input No Error Remove User 4

S8 clickOkRemoveMember No Input No Error Remove User 7

S9 clickLinkSendInstruction No Input No Error SendMalicousLink 1

S10 clickSendInstruction No Input No Error SendMaliciousLink 2

Although the situational data set under our discussion is collected based on target system

domains, the methodology we proposed can assist in building IDS for any systems. When

researchers or practitioners collect data to build their IDS, actions and context can be captured

automatically and desires and temporal intentions need to be labeled manually. On the other

hand, data set may be collected from different web applications or platforms, nevertheless

they can be shared and combined as long as they have similar components based on intrusion

detection investigation features. For example, we can build one IDS that is applicable for some

commercial web sites specially and build another one for some financial web sites specially.

Because the collected data can be used across different platforms, it is relatively easy for us to

maintain and update the training data set for improving detection performance and handling

possible new attack patterns.

www.manaraa.com

41

3.4 Evaluation of Situational Data for IDS by HMM

Recall that our objective in this chapter is to evaluate our Situational Data Model compared

to conventional data with action sequences only. Specifically, we apply the HMM model on data

consisting of only action sequences and data under the Situational Data Model. To proceed,

we first provide details regarding our experiment setup and descriptions of software for training

HMM in Section 3.4.1, then we discuss results in Section 3.4.2.

3.4.1 Description of Experiment

For simplicity, let us denote the data set corresponding to action sequences only as A, and

the data set with sequences of situations as B. For each of the two data sets, we partition the

data into training set and testing set first, then generate another validation set independently.

Specifically, we use stratified sampling such that a simple random sampling framework is applied

and is stratified by normal sequences and malicious sequences, such that similar portions of

malicious records in each of the training and testing sets can be obtained. In our experiment,

we use 50-50 split of the entire data, such that 50% of the sequences will be randomly selected

to serve as the training set with the rest serving as the testing set. A random number generator

seed is selected such that results are reproducible. The validation set is then independently

sampled from the entire data containing similar number of sequences as the training or testing

data, i.e., 50% of the sequences. In general, we use the training set to train an HMM model

and obtain an IDS, the validation set to select decision thresholds and the test set to compare

performance.

As we discussed in Section 3.2.1, a parametric model p(X,Y ; θ) is often adopted for HMM

model, where X are observed data and Y are hidden state variables. Let X and Y be sets

of all possible distinct values of X and Y , respectively. To implement HMM, we adopt the

jahmm package [20], which uses the Baum-Welch algorithm. Before it can be run, this java

package needs to have observations and initial estimates of parameters in an HMM model.

Those parameters and their estimates of initial values are described below.

www.manaraa.com

42

• {π(y) | y ∈ Y}: Marginal probability distributions of the hidden state variables at starting

time point. For each potential value, say y, of a hidden state variable, its initial value can

be estimated by evaluating the proportion of sequences whose initial hidden state value

is y.

• {πyi, yj | yi, yj ∈ Y}: Transition probability matrix of all possible values of a hidden state

variable. For the transition probability from y1 to y2, this initial value can be calculated

by counting the proportion of transition records y1 → y2 out of all transition records

y1 → anything.

• {πx|y | x ∈ X , y ∈ Y}: Conditional probabilities of an observed variable taking a partic-

ular value, say x, given each possible value of a hidden state variable, say y. The initial

value of this parameter can be estimated by calculating the proportion of records that

link hidden state variable’s value y and observed variable’s value x among all records that

have hidden state value being y.

When an HMM model using jahmm finishes running, the output contains final estimates

of all the aforementioned parameters. In addition, it also includes the most probable outcome

for each observed data Y . In our cases, the hidden state is temporal intention, with values

ranging from 0 to 10. Note that those values do not directly translate into whether an ob-

servation corresponds to a normal or malicious intention. There are many possible ways to

utilize the predicted temporal intention values for classification purpose. We use the average

value of the predicted sequence, that is, suppose a predicted sequence of temporal intentions

are tempI1, . . . , tempIT , then we use

avg.tempI = T−1
T∑
t=1

tempIt. (3.1)

A large value of avg.tempI indicates high intention of being malicious. Therefore, our decision

rule based on predicted temporal intension is simply

ψ(γ) = I{avg.tempI > γ},

where γ is a threshold value, and a sequence will be classified into being malicious if ψ(γ) = 1

and normal otherwise. For the choice of threshold value γ, we will use the validation data to

www.manaraa.com

43

select a γ such that some pre-specified criteria will be satisfied with desirable performance. For

instance, we can check the accuracy of prediction, i.e., the proportion of sequences, including

both malicious and normal sequences, that are correctly classified, and select the γ∗ that

maximizes accuracy. Apply this selected γ∗ to the test data, and compare performance of

different methods based on accuracy or other similar criteria. We give more details of evaluation

criteria and threshold determination in the upcoming section.

For data set A where only action sequences are used, it is straightforward to apply the above

HMM model by using action sequences as observed data X, and temporal intensions as hidden

state variables Y . When our Situational Data Model (see Section 3.3.3 for more details) is used,

i.e., data set B is concerned, we apply the HMM twice through a two-step procedure. In the

first step, in addition to the action sequence, we also consider context sequences. Meanwhile,

we consider the desire as a hidden state, and in the first step, the goal is to train a model that

predicts desires based on action and context sequences. Note that in our training data, we

have desires provided by participants. Following this step, we train another HMM model by

treating desire sequences as observed data and temporal intention sequences as hidden state

data. When the trained IDS model is used on the testing data set, we first predict the desire

based on the model we built in the first step, then use the predicted desire in our trained model

obtained in the second step to further predict the temporal intention sequence. We leave details

of their comparisons in the upcoming discussion.

3.4.2 Experiment Results

To compare performance of the HMM applied to sequence of actions and the HMM applied

to sequence of situations, we introduce the following measurements. Specifically, we consider

accuracy, i.e., proportion of correctly classified outcomes; false positive rate, i.e., proportion

of misclassified normal sequences; true positive rate, i.e., proportion of correctly classified

malicious sequences, and ROC curve. In mathematical notations, without loss of generality, we

can assume that the first n sequences are normal and the rest N − n sequences are malicious,

and let δi be the classification rule of sequence i, i = 1, . . . , N , such that δi = 1 indicates that

sequence i is classified as being malicious or normal otherwise (δi = 0). Then the accuracy

www.manaraa.com

44

(ACC), false positive rate (FPR), and true positive rate (TPR) are defined as follows:

ACC =

∑n
i=1(1− δi) +

∑N
i=n+1 δi

N
, (3.2)

FPR =

∑n
i=1 δi
n

, (3.3)

TPR =

∑N
i=n+1 δi

N − n
. (3.4)

For any intrusion detection method, an associated threshold γ for a decision instrument, e.g.,

posterior probability of being malicious, is typically selected to form a decision rule. And for

each decision rule, based on the results, ACC, FPR and TPR can then be evaluated. A ROC

curve would be created by collecting all (FPR, TPF) pairs for all possible threshold choices.

Also, for simplicity, we denote the two HMM methods as HMM1 and HMM2 in the following:

HMM1 : HMM method making use of only action sequences;

HMM2 : HMM method making use of Situ sequences.

In Figure 3.6, we display the accuracies of HMM1 and HMM2, where the x-axis is the

threshold value γ. For each of the HMMs, accuracy curves for both validation and test are

shown. As we can see, except minor difference for HMM2, validation and test data exhibit very

similar accuracy curve performance. If we use the accuracy measurement as a guide to select

threshold value for each decision rule, then for HMM1, a threshold γhmm,1 can be selected as

approximately 2.75, leading to about 85% accuracy as its maximum. For HMM2, a threshold

γ ∈ [0.5, 1] results in a maximum accuracy of approximately 95%. Those accuracy curves

show that HMM2 produces better accuracy in terms of both the maximum value and overall

profile. Meanwhile, the shape of the curve with respect the threshold value also makes sense.

In particular, for an extremely small threshold, δi is more likely to be classified into being

malicious, thus majority of δi will be 1. Based on equation (3.2), the accuracy will be close

to 1 − n/N , corresponding to the accuracy under the case when threshold is 0. On the other

hand, when the threshold is extremely large, very little to no sequences may be classified as

being malicious, i.e., majority of δi’s are 0, thus the accuracy measurement will be very close to

n/N . Therefore, the accuracy should increase when the threshold value initially increases from

www.manaraa.com

45

0, and reaches its maximum at a certain point then start to drop when the threshold continues

to grow.

(a) HMM using Action Sequence Only

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Threshold

A
cc

ur
ac

y

Data Validation Test

(b) HMM using Situ Sequence

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Threshold

A
cc

ur
ac

y

Data Validation Test

Figure 3.6: Accuracies of HMMs

An alternative approach to compare them is the ROC curve, which consists of all possible

(FPR, TPR) pairs. We show ROC curves for HMM1 and HMM2 in subfigures (a) and (b)

of Figure 3.8, respectively. In terms of ROC curves, the one that has larger area under the

curve, or is closer to top left corner, is deemed to have better performance. This is because,

if we fix the FPR and check the TPR, then the curve that has higher TPR value is better.

This is essentially very similar to hypothesis testing where we control or fix one dimension,

e.g., FPR or type I error, and look at the other TPR or power. Figure 3.8 shows that HMM2

has better ROC curve property than HMM1. That is, if we fix FPR to be around 5%, then

HMM1 gives about 50% FPR, while HMM2 gives about 85% to 90% FPR. We do notice some

visible difference between the ROC curves of validation and test datasets for each of the two

HMM models. Specifically, if we fix FPR, and check the difference between TPRs of validation

and test dataset, the maximum difference is about 6% for HMM1 and about 10% for HMM2.

However, this may not be surprising due to the random variation of sampling.

www.manaraa.com

46

(a) HMM using Action Sequence Only

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Data Validation Test

(b) HMM using Situ Sequence

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Data Validation Test

Figure 3.8: ROC Curves of HMMs

To link the accuracy figures with the ROC curve figures, we also present the relationship

between threshold values and their corresponding FPR and TPR in Figure 3.10. When the

threshold value is about 2.75 for HMM1, the FPR for both validation and test are controlled

under 5%, however, the TPR is about 48%. That is, even that the accuracy for HMM1 is about

85%, the TPR is still not very ideal. This is because the accuracy measure, i.e., ACC, in (3.2)

can be regarded as a weighted average of FPR and TPR. In fact, ACC can be written as

ACC =
n

N
(1− FPR) +

N − n
N

TPR. (3.5)

In our example, because malicious events are relatively rare compared to normal events as

it’s mostly the case in practice, the accuracy measurement puts more weight, i.e., n/N , on

FPR. Now let us examine FPRs and TPRs with respect to threshold values for HMM2. As

mentioned earlier, the accuracy performance is fairly well and stable for a range of threshold

values between [0.5, 1], as reflected in Figure 3.5b. If we take a threshold value of 0.5, then the

associated FPR is controlled under 5%, and the TPR is about 90% for the validation data set

and about 85% for the test data set. This makes the advantage of HMM2 over HMM1 more

visible and pronounced.

www.manaraa.com

47

From this exercise, we also see that accuracy may not be the only option to guide the

determination of a threshold value. More broadly speaking, a general weighted version of

accuracy can be proposed as

ACCw = w(1− FPR) + (1− w)TPR.

A threshold can then be selected using the validation data, based on a weighted version of

accuracy measurement.

3.5 Conclusion and Future Work

In summary, we introduce a new data model, i.e., the Situational Data Model, to build an

IDS. We give definition of this model, and elaborate on how this model can be applied in an

HMM framework for intrusion detection. In particular, we describe how the situational data

are collected in real applications, and we run experiments to explore the performance of the

Situational Data Model when compared to the data model that uses only action sequences.

We study with due diligence their accuracy, false discovery rates, false positive rates, and ROC

curves. As we can see from the results, the Situational Data Model outperforms its comparator

and can provide benefits in building more effective IDS. In the next chapter, we will investigate

an alternative machine learning method other than HMM to build IDS, on top of our Situational

Data Model.

www.manaraa.com

48

(a) HMM using Action Sequence Only

Validation Test

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 0 1 2 3 4 5
Threshold

FP
R

/T
P

R

type FPR TPR

(b) HMM using Situ Sequence

Validation Test

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 0 1 2 3 4 5
Threshold

FP
R

/T
P

R

type FPR TPR

Figure 3.10: False Positive Rates and True Positive Rates of HMMs

www.manaraa.com

49

CHAPTER 4. SITUATION AWARE INTRUSION DETECTION

SYSTEM USING CONDITIONAL RANDOM FIELDS

Abstract

In this chapter, we introduce Situation Aware with Conditional Random Field based In-

trusion Detection System (SA-CRF-IDS), where the intrusion analysis is performed by prob-

abilistic graphical models of Conditional Random Fields (CRF) over a sequence of observed

situations. Compared to other similar models, such as Hidden Markov Models (HMM), used

in Intrusion Detection, CRF can represent intrusion problems more comprehensively. In an

HMM, a Markovian assumption is adopted such that any hidden state only conditionally de-

pends on the state from its immediate neighbor at the previous position or time point. This

assumption is effectively relaxed in CRF models, where each hidden state can depend on all its

neighbour hidden states and observations at any of the previous time points. This gives CRFs

more freedom to detect crafty attackers that often hide their footprint by inserting lots of noisy

information when attacking. We compare the CRF and the HMM model on both the sequences

of actions data set and sequences of situation data set. From our experiment result, the CRF

is more effective than HMM for the action-sequence data set. On the other hand, those two

models are very competitive and comparable in detecting intrusion over the situational data

set.

Key Words: Intrusion detection system, Conditional Random Field, Hidden Markov Model,

Detection accuracy, ROC.

www.manaraa.com

50

4.1 Introduction

This article introduces a paradigm for building Situation Aware with Conditional Random

Field based Intrusion Detection System (SA-CRF-IDS). The SA-CRF-IDS is used for classi-

fying malicious intention and normal intention by analyzing collected situational data such as

environmental context information, activities, and inferred desires.

Many machine learning approaches have been routinely utilized in intrusion detection. For

instance, Jonathon and Deepti [44] run data mining tools against a log file to detect intrusion.

Chen et al. [14] used Rough Set Theory to select features and applied the Support Vector

Machine method to learn and test based on selected features. Meanwhile, Feshki et al. [19] also

utilized Support Vector Machine as the core component of their proposed system to classify

alerts. In addition, Wee et al. [63] proposed a Bayesian network for the modeling of network

intrusion domain. They also applied the powerful reasoning capabilities of Bayesian network

to detect intrusions. Moreover, Al-Jarrah and Arafat [1] applied principal component neural

networks for recognizing attacks and tested their system in real practice and the DARPA [31]

datasets.

Among all those machine learning methods, Hidden Markov Models (see Section 3.2.1) are

very popular statistical tools for intrusion detection because they are powerful for finding the

hidden and underlying structure of given sequential data. For example, in [27], an HMM was

used for training the intrusion detection model based on system calls sequences. Ariu et al.

[7] designed an intrusion detection system named HMMPayl to detect attacks against web

applications through the analysis of the HTTP payload and Hidden Markov Model. They

represented the payload as a sequence of bytes. On the other hand, the detection system

proposed by Chen et al. [13] analyzed multiple logs from cloud to extract the intension of the

actions. In their work, a Hidden Markov Model was adopted to model sequences of attacks

performed by hackers and such stealthy events in a long time frame will become significant in

the state-aware model. Moreover, Jain and Abouzakhar [28] analyzed the performance of a

Hidden Markov Model and Support Vector Machine for anomaly intrusion detection based on

www.manaraa.com

51

the publicly available KDD Cup 1999 dataset. For sequential data sets, HMMs can represent

and model intrusion detection problems better than many of other static approaches.

However, HMMs suffer from several assumptions that may not be realistic in many appli-

cations. Firstly, an HMM adopts the Markov assumption that the next state conditionally

depends only on the current state. This assumption may be unreasonable in intrusion detec-

tion problems when we represent the attacking process as sequences of states and observations.

A sophisticated attacker can intentionally perform normal actions and malicious actions al-

ternately in a staggered fashion to confuse detection. Therefore, in this case it may not be

sufficient to just check the current state to label its succeeding state, because observations

at any earlier time point may also be relevant. Secondly, an HMM assumes that transition

probabilities are independent of actual time points when the transitions take place. Third, an

HMM assumes that observations are statistically independent from each other conditional on

hidden states. This assumption may not be pragmatic in intrusion detection problems where

the features are often associated with each other.

To address the problems mentioned above, we utilize Conditional Random Fields (CRFs)

to build intrusion detection systems. CRFs have been used for intrusion detection in the

literature [23, 51, 9, 47, 56, 62, 52]. However, most of the existing approaches aim to model

the dependency relationships among different features, similarly to aforementioned classical

methods. That is, they did not take full advantage of CRFs to train on sequences of features in

chronical order to build intrusion detection models. Plus, most of the researches only worked on

the KDD Cup 1999 dataset or DARPA 2000 data set, which may not be representative of many

other practical intrusion settings. Therefore, in this paper we want to seize the opportunity to

represent each data record as a sequence of situations, and develop intrusion detection models

that use CRFs to build IDS using situation sequences. With situational data, CRFs can help

us detect malicious intentions based on the footprints of situations.

Our SA-CRF-IDS has two major components. The first component is the situational data

(refer to Section 3.3) collected and parsed following the Situ Framework [11]. The second one

is the classifier based on Conditional Random Fields that can represent intrusion detection

problems more generally than other similar approaches. The working process of the proposed

www.manaraa.com

52

SA-CRF-IDS is as follows: Firstly, a sequence of desires is predicted based on the sequence of

actions and context. Secondly, each of those desires is assigned value, i.e., tempI, that reflects

the feasibility of attack at specified time points. Finally, the SA-CRF-IDS classifies each desire

sequence into normal intention or malicious intention. In order to compare a CRF and an

HMM, we run both models on each of the action-only sequences data set and the situational

data set. We then compare their performance by studying their false positive rates, true positive

rates, and ROC curves in intrusion detection, similar to our discussions in Chapter 4.3.2.

The rest of this paper is organized as follows: Section 2 introduces Conditional Random

Fields with more details. Section 3 describes the construction of SA-CRF-IDS. Section 4

illustrates how we conduct our experiment and show what our results are. Section 5 concludes

with a summary and a discussion about some potential future work.

4.2 Conditional Random Fields

As aforementioned, we plan to build our intrusion detection system using CRFs. A CRF is

an undirected graph H, whose nodes correspond to a node set X ∪Y , where X represents a set

of selected features and Y stands for dependent variables of interest. This graph or network

is annotated as a Gibbs distribution with a set of factors φ1(D1), . . . , φT (DT) such that each

Dt is not a subset of X (i.e., Dt contains information from both X and Y), where the index

t denotes the position of CRF sequence. The network encodes a conditional distribution as

follows [34]:

P (Y | X) =
1

Z(X)
p(Y,X),

p(Y,X) =

T∏
t=1

φt(Dt),

Z(X) =
∑
Y

p(Y,X),

(4.1)

where Z(X) is the normalizing constant, or partition function, that makes P (Y | X) a valid

probability function. Conditional Random Fields are probabilistic models for computing the

probability P (Y | X) of a possible output Y = (y1, . . . , yT) given an input X = (x1, . . . , xT),

which sometimes is also called an observation sequence.

www.manaraa.com

53

CRFs have been broadly applied in many research areas and topics. For example, Angrosh

et al. [6] used CRFs to build a supervised learning mechanism for context identification and

sentence classification. Joder et al. [29] introduced the use of CRFs for the audio-to-score

alignment task. Zhang and Gong [65] proposed a method for action categorization with modified

hidden conditional random fields. Shen et al. [50] proposed a sparse hidden dynamic CRF model

for user intent learning from their search session. Among those researches and applications,

a particular CRF that is frequently used across various fields is the linear chain conditional

random field, which can be represented graphically by Figure 4.1 [61, 55, 32]. A linear chain

Figure 4.1: Linear Chain Conditional Random Fields

CRF often defines the following probability models

p(Y | X) =
1

Z(X)

T∏
t=1

exp

{
K∑
k=1

θkfk(yt, yt−1, X)

}
,

Z(X) =
∑
Y

T∏
t=1

exp

{
K∑
k=1

θkfk(yt, yt−1, X)

}
,

(4.2)

where X is a set of input variables that can be observed, Y is a set of output variables that needs

to be predicted, the letter t denotes positions in observation sequence X and label sequence Y ,

and f1, . . . , fK denotes K feature functions defined either from domain knowledge or trained

from the training dataset.

www.manaraa.com

54

As a sequential model, a linear chain CRF has some similarities with an HMM, but also

offers several advantages over the HMM. For illustration purpose, we display the graphical rep-

resentative models of an HMM in Figure 4.2 (Note that the CRF is represented in Figure 4.1).

First of all, a CRF allows rich and unconstrained feature representation that could overlap or

refer arbitrary to the observation, because it does not model interdependence on the observa-

tions as a discriminative model. Secondly, the Markov assumption that a succeeding state is

only dependent on the current state is relaxed in CRF. Thirdly, a CRF defines a conditional

probability distribution that is not structured as a table, but rather induced by a small set of

parameters θ1, . . . , θK , whose possible values are more general than just exponential positive

values.

Figure 4.2: Hidden Markov Model

The goal in the training step of a CRF model is then to estimate the feature function weights

θ1, . . . , θK based on the data. In this training step, it aims at finding a sequence of weights such

that the CRF model can represent the training dataset as accurately and likely as possible.

The parameter estimation is usually performed by the penalized maximum likelihood method

[55]. Once the parameters estimates are obtained and the model is built, for any observed

feature value X∗, we can apply this model to obtain the conditional probability P (Y | X∗) for

all possible label sequence Y . Following this, we can then infer the label sequence as Y ∗ that

www.manaraa.com

55

has the highest probability to occur, i.e., Y ∗ = arg maxY P (Y | X∗). The Forward-Backward

and the Viterbi Algorithm [32], which are based on sending message along the chain in the only

two possible directions, can be applied for the inference. We explain the details of parameter

estimation and outcome inference later in Section 4.3 when we introduce the construction and

evaluation of our SA-CRF-IDS.

4.3 Situation Aware Intrusion Detection using Conditional Random Fields

4.3.1 Framework of SA-CRF-IDS

In this section, we describe how an SA-CRF-IDS is constructed. In particular, Figure 4.3

illustrates the framework of an SA-CRF-IDS, starting from data processing to classifier training

and evaluation. This process is elaborated in the following steps:

Step 1. Parse collected raw data into situational data following the model introduced in Sec-

tion 3.3. Specifically, we format the data to sequences of actions and environmental

contexts, and sequences of desires.

Step 2. Then we build two CRF models, by first establishing a CRF model, say desire CRF, from

sequences of actions and contexts information to desire sequences, followed by building

a CRF model, say tempICRF, from desire information to temporal intention. For train-

ing data, the temporal intention is manually labeled according to actions, contexts and

desires.

Step 3. The inference process of an SA-CRF-IDS involves two steps. In the first step, a desire

sequence is predicted based on the desire CRF model using input of a sequence of actions

and contexts. Next, use the predicted desire sequence as the input in the tempICRF

model, and obtain a sequence of temporal intention.

Step 4. The last step is to classify the observed data into being intrusion or not. This is achieved

by comparing the average value of all individual temporal intention values over time in

the predicted temporal intention sequence to a threshold γ. The selection of the threshold

γ will be covered with more details in Section 4.4.

www.manaraa.com

56

Figure 4.3: Flowchart illusrating the training and evaluation of SA-CRF-IDS

4.3.2 Parameters Training for SA-CRF-IDS

With the situational training dataset, we apply CRF to build the intrusion detection sys-

tem. The process of building an IDS is essentially the process of parameter training. In our

IDS, the parameter training includes θ1, . . . , θK training for desire CRF and ω1, . . . , ωm training

for tempICRF as shown in Figure 4.3. In this subsection, we discuss briefly the estimation of

model parameters θ1, . . . , θK for the desire CRF model. The estimation of model parameters

ω1, . . . , ωm for the tempI CRF is similar. The parameters are usually trained by maximum like-

lihood estimation. Specifically, suppose the training dataset is D = {(Xi, Yi) | i = 1, . . . , N},

where Xi’s are feature variables and Yi’s are outcomes of interest. The maximum likelihood

principle is to find appropriate parameters such that the model can best represent the distri-

bution of training dataset D. When the training dataset contains N records, following equa-

tion (4.3), the logarithm of the joint conditional probabilities of Y1, . . . , YN given predictors

www.manaraa.com

57

X1, . . . , XN can be written as

L(θ,D) = log

(
N∏
i=1

P (Yi | Xi, θ)

)

=

N∑
i=1

log

[
1

Z(Xi)
exp

T∑
t=1

K∑
k=1

θkfk(Yi,t−1, Yi,t−1, Xi)

]
,

(4.3)

where Yi = (Yi,1, . . . , Yi,T−1) is a sequence of response at time points t = 1, . . . , T . Note that

in the above model we did not write explicitly Xi and allow it to potentially contains all it

components from different time points. Very often, for simplicity, we consider feature functions

fk such that fk(Yt, Yt−1, X) = fk(Yt, Yt−1, Xt) for each k.

The parameters can be estimated by θ̂ = arg maxθ L(θ,D). In our discussion here, we con-

sider exponential families such that the maximization of the the objective function is a convex

optimization problem. More general CRF models are possible by adopting different paramet-

ric models, including varying feature functions fk and probability mass functions beyond the

exponential family.

Notice further that the above formula is generic. For instance, as we mentioned in the

previous subsection, we have two CRF models, i.e., the desire CRF model that takes action

and context sequences as X and desires sequences as Y , and the temporal intention tempICRF

model that uses desire sequences as X and temporal intention sequences as Y . In desire

model level of SA-CRF-IDS, we train the parameters θ1, . . . , θK to maximize the corresponding

objective function following (4.3). Similarly, in the temporal intention model level of SA-CRF-

IDS, we train the parameters ω1, . . . , ωm to maximize the corresponding objective function

following (4.4), where we allow potentially different feature functions gj , j = 1, . . . ,m.

L(ω,D) =

N∑
i=1

log

 1

Z(Xi)
exp

T∑
t=1

m∑
j=1

ωkgj(Yi,t−1, Yi,t−1, Xi)

 . (4.4)

4.3.3 Inference of SA-CRF-IDS

Once parameter estimates θ̂ from the model in 4.3 and 4.4 are obtained, an SA-CRF-IDS

model is built, and we can apply the SA-CRF-IDS for inference. In particular, for any new

observed sequence Xnew, the conditional probability of observing any potential response Y

www.manaraa.com

58

given Xnew, i.e., P (Y | X∗, θ̂), can be easily evaluated. Then the most probable sequence Y ∗

given X and based on the predicted model is

Y ∗ = arg max
Y

P (Y |Xnew; θ̂). (4.5)

Note that the above step of finding the maximizer may not be as trivial as it looks like. The

Viterbi algorithm is frequently used for finding the most probable sequence(s) [55].

As we described in Section 4.3.1, our SA-CRF-IDS involves two CRF models. Therefore,

in the first step, we apply the desire CRF model and obtain the most probable desire sequence

desire∗ based on the sequence of actions and contexts, i.e., Xnew = {Anew, Cnew}. Then using

the temporal intention CRF model, we get the most probable temporal intention sequence

tempI∗ given desire∗.

Based on the predicted temporal intention sequence tempI∗, we can calculate the average

of tempI∗, say avg.tempI∗, over its components corresponding to temporal intention values

at different time points. We then classify the whole sequence of situations to be normal or

malicious by comparing avg.tempI∗ to a threshold γ. When avg.tempI∗ is equal or greater

than γ, we classify it as intrusion, otherwise is normal.

4.4 Experiment Design and Evaluation

To validate our hypothesis of advantages, see, e.g., Section 4.1 and Section 4.2, of using

CRFs in Intrusion Detection over HMMs, we conduct CRF-based experiments to compare the

effectiveness of a CRF and an HMM when we apply them in the same data set. In this section,

we describe details of our experiment design and the result.

4.4.1 Experiment Design

Here we conduct two experiments to compare a CRF and an HMM. In the first experiment,

we compare them in the data set, say A, that includes only the action sequences. Then in the

second experiment, we compare them in the Situational data set, say B, (see Section 3.3 for

details). In other words, we will study the following four model+dataset combinations:

(1) the HMM model on data set consisting of only action sequences, i.e., A;

www.manaraa.com

59

(2) the HMM model on the Situational data set, i.e., B;

(3) the CRF model on data set consisting of only action sequences, i.e., A;

(4) the CRF model on the Situational data set, i.e., B;

In Chapter 3, we have comprehensively discussed and compared (1) and (2). In this section, we

focus mainly on (3) and (4) and the comparisons between (1) and (3), as well as (2) and (4).

For each of those four experiments, we partition the dataset into a training set and a testing

set first, then generate the validation set independently. Details on how we select them and

the proportion of training, testing sets can be found in Section 3.4.1.

For implementation of CRF, we apply the open-source program CRF++ [40] to build our

SA-CRF-IDS. As can be seen in the previous section, one important component of building

a CRF model is the specification of feature functions f1, . . . , fK to be used in (4.3). In the

CRF++ tool, this is achieved by providing a feature template file. In our experiments, we adopt

the default feature template of CRF++, which is then automatically translated by CRF++

into feature functions for the CRF model. In terms of the selection of X and Y in (4.3), when

we run CRF on the first data set, A, we use action sequences as X and temporal intention

sequences as Y . When it comes to building our SA-CRF-IDS on the Situational data set, B,

we first select action and context sequences as X and desire sequences as Y to build the desire

CRF, then we use desire sequences as X and temporal intention as Y to build the tempI CRF.

In the previous section, we have discussed main procedure of the SA-CRF-IDS, e.g., the

involvement of two CRF models. Here, we illustrate in details both experiments (3) and (4)

in Figure 4.4 and Figure 4.5, respectively. Each run of CRF++ involves two processes, i.e., a

training process and a testing process. In the training process, CRF++ takes a training data

set and outputs a training model file. This training model file is then applied by CRF++ to

the testing data set in the testing process. Take experiment (3) in Figure 4.4 for example, in

steps 1© and 2©, CRF++ toolkit first trains a tempI CRF model based on the training data set

consisting of action only sequences as X and temporal intention sequences as Y . Then using

the trained model in steps 3© and 4©, the CRF++ predicts temporal intention sequences for

the test data set.

www.manaraa.com

60

Figure 4.4: Process of CRF in Action-Only Sequence Data Set

For experiment (4), there are two CRF models as show in Figure 4.5. Specifically, first

of all, the CRF++ toolkit trains a desire CRF model based on (Action, Context, Desire)

components from the Situational training data set in steps 1© and 2©, and trains a tempI CRF

model based on training data consisting of desire and temporal intention sequences in steps 5©

and 6©. Then in the testing step, the desire CRF model is first applied in steps 3© and 4© to

predict a desire sequence, which is later used by the established tempI CRF model to predict

the tempI sequence in steps 7© and 8©.

The outputs from CRF++ include all information from the original testing data set, and

additionally the most probable outcome Y ∗, and the associated predicted conditional proba-

bilities p(Y ∗ | Xnew; θ̂). For instance, consider experiment (3) where we apply a CRF model

on the data set A, the following sample output in Table 4.1 gives predicted outcome for one

action sequence in the test data set. The first two columns include (Action, tempI) pairs in one

sequence from the test data set, and the third column is the predicted most probable tempI

sequence with associated probability value at each time point shown in the last column.

www.manaraa.com

61

Table 4.1: Sample output from testing step by applying CRF++ on action-only sequences

Action tempI tempI∗ Prob

clickSkipPreQuestion 0 0 0.995

clickMenuHome 0 0 0.999

clickMenuSignin 0 0 0.993

clickLogin 1 1 0.882

clickLogin 4 2 0.772

clickLogin 7 4 0.755

clickLogin 10 7 0.670

clickMenuAllPapers 0 0 0.794

clickPaperInfosAllPapers 0 0 0.834

clickMenuAllPapers 1 0 0.854

clickRemoveCommentMyPapers 2 1 0.684

clickOkRemoveComment 4 2 0.648

clickMenuListUsers 0 0 0.510

clickLinkModify 1 1 0.862

clickModify 2 2 0.867

clickLinkModify 4 4 0.722

clickModify 7 7 0.665

clickMenuListUsers 0 0 0.802

clickLinkAddNewAccount 1 1 0.744

clickAddNewAccount 2 2 0.719

clickMenuAllPapers 0 0 0.649

clickRemoveCommentMyPapers 1 1 0.729

clickOkRemoveComment 2 2 0.704

clickEndSession 0 0 0.909

www.manaraa.com

62

Figure 4.5: Process of CRF in Situational Data Set

For experiment (4), as aforementioned, it includes two CRF models, corresponding to the

building of desire CRF and tempI CRF models. We exhibit part of the outputs corresponding

to step 4© and step 8© of Figure 4.5 in Table 4.2 and Table 4.3, respectively. As can be seen in

those two tables, in the output of the desire CRF model, sequences of action and context are

taken as X, and desire as Y . Then the most probable desire sequence desire∗ is predicted with

associated probabilities at each time point displayed in the last column. In the output of the

tempI CRF model, the predicted desire sequences, i.e., Desire∗ are then used as X and tempI

sequences are used as Y , leading to predicted tempI∗ sequences. As shown in Table 4.3, the

predicted desire sequence Desire∗ in Table 4.2 is used as an input.

For inferences, as briefly covered in Section 4.3.3, we average each predicted Y ∗ sequence,

which in our case is a tempI∗ sequence, to obtain avg.tempI∗. The avg.tempI∗ values are then

compared to some threshold value γ and sequences with avg.tempI∗ larger than γ are classified

as intrusions. In the upcoming section, we discuss the results of our experiments in details.

www.manaraa.com

63

Table 4.2: Sample output from testing step of desire CRF by applying CRF++ on the Situa-

tional data set

Action Context

clickSkipPreQuestion NoInput NoError

clickMenuSignin NoInput NoError

clickSignup NoInput NoError

clickSignup SqlInput ErrorRemind

clickSignup SqlInput ErrorRemind

clickSignup SqlInput ErrorRemind

clickSignup SqlInput ErrorRemind

clickSignup SqlInput NoError

clickMenuSignin NoInput NoError

clickLogin SqlInput NoError

clickMenuMyPapers NoInput NoError

clickMenuUploadPaper NoInput NoError

clickMenuMyComments NoInput NoError

clickMenuAllPapers NoInput NoError

clickSubmitCommentAllPapers InsertedLink NoError

clickSubmitCommentAllPapers InsertedLink NoError

Desire Desire∗ Prob

Test Test 1.00

LogIn LogIn 0.85

SignUp SignUp 0.79

RegisterIllegalUser RegisterIllegalUser 0.97

RegisterIllegalUser RegisterIllegalUser 0.99

RegisterIllegalUser RegisterIllegalUser 1.00

RegisterIllegalUser RegisterIllegalUser 0.99

RegisterIllegalUser RegisterIllegalUser 0.95

LogIn LogIn 0.96

LogIn LogIn 0.52

UploadPaper ViewMyPapers 0.93

UploadPaper UploadPaper 0.71

EditComment ViewMyCommentInfo 0.45

EditComment ViewAllPapers 0.75

EditComment SubmitComment 0.98

EditComment SubmitComment 0.97

www.manaraa.com

64

Table 4.3: Sample output from testing step of tempI CRF by applying CRF++ on the Situa-

tional data set

Desire∗ tempI tempI∗ Prob

Test 0 0 0.999

LogIn 0 0 0.998

SignUp 0 0 0.966

RegisterIllegalUser 1 1 0.914

RegisterIllegalUser 2 2 0.890

RegisterIllegalUser 4 4 0.830

RegisterIllegalUser 7 7 0.770

RegisterIllegalUser 10 10 0.892

LogIn 0 0 0.971

LogIn 0 0 0.996

ViewMyPapers 0 0 0.998

UploadPaper 0 0 0.996

ViewMyCommentInfo 1 0 0.991

ViewAllPapers 2 0 0.998

SubmitComment 4 1 0.966

SubmitComment 7 2 0.920

4.4.2 Experiment Evaluation

In this subsection, we compare CRF intrusion detection methods to HMM detection meth-

ods. Similar to the definition of HMMi, i = 1, 2 in Chapter 3, we can define CRFi, i = 1, 2 as

the following:

CRF1 : CRF method making use of action sequences only;

CRF2 : CRF method making use of Situ sequences,

corresponding to experiment (3) and (4) (introduced in Section 4.4.1) respectively. Our focus

here is to compare the performance of HMMi and CRFi for each i = 1, 2. That is, we want

to compare the experiment results of (1) with (3), and (2) with (4). Again, we study their

accuracy, false positive rate, and true positive rate under different threshold values, where

ACC, FPR, TPR are defined in (3.2) - (3.4).

Firstly, we display the accuracy and ROC curve of CRF1 in Figure 4.7. For ease of reference

and comparison, we also display the accuracy and ROC curve of HMM1 in the same figure.

Those figures contain results for both the validation data set and test data set. For both HMM1

www.manaraa.com

65

and CRF1, we can see that validation and test data have very similar accuracy profile as their

corresponding lines almost overlap with each other, except minor difference in the ROC curve

for HMM1. In terms of threshold selection guided by accuracy, a practical threshold for CRF1

can be anywhere from 0.25 to 1 based on Figure 4.6b, leading to approximately 98% ∼ 99%

accuracy. On the other hand, based on Figure 4.6a, the threshold for HMM1 can be selected as

2.75, giving about 85% accuracy. Thus, the accuracy of CRF1 is significantly better than that

of HMM1, especially in terms of the maximum accuracy. In addition, as reflected in Figures

4.6c, 4.6d, the ROC curve of CRF1 also clearly outperforms that of HMM1.

Secondly, we compare the false positive and true positive rates of HMM1 and CRF1. We

display their FPR and TPR profiles in Figure 4.9. Again, the overall trend for the validation

and test data set behaves very similarly. If we compare Figure 4.8a and Figure 4.8b, we observe

that the FPR for CRF1 decreases very quickly towards 0 when the threshold value increases

from 0. And for a threshold value that is slightly larger than 0 but no larger than 1, the

FPR for CRF1 is controlled under 5% and the associated TPR is maintained as high as 95%.

However, the FPR for HMM1 decays much slower than CRF1 when the threshold increases.

In particular, when the threshold is increased to a level, e.g., 2.75, such that FPR for HMM1

is controlled under 5%, the corresponding TPR for HMM1 is barely over 50%. The more

dramatic difference (compared to accuracy) between TPRs of HMM1 and CRF1 when fixing

FPR is understandable. This is because, as can be seen from (3.5), the accuracy is a weighted

average of FPR and TPR, where the weights on TPR, i.e., 1−n/N (the proportion of malicious

sequences) is roughly 20% in our case (see Table 3.1). Therefore, a roughly 50% difference in

TPRs between HMM1 and CRF1 while with FPRs controlled under 5% for both of them,

translates into approximately 20% × 50% = 10% difference in accuracy, which is consistent

with the findings from Figure 4.6a and Figure 4.6b.

Now let us compare results from experiment (2) and (4) corresponding to HMM2 and CRF2.

Similarly, we can look at accuracy, ROC curve, false positive rate, and true positive rate. We

display their accuracy and ROC curves in Figure 4.11. First of all, the lines for validation

data set and test data set align better for CRF2, as visible difference can be seen between the

curves of validation and test datasets for HMM1. In terms of maximum accuracy values, CRF2

www.manaraa.com

66

(a) Accuracy for HMM1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Threshold

A
cc

ur
ac

y

Data Validation Test

(b) Accuracy for CRF1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Threshold

A
cc

ur
ac

y

Method Test Validation

(c) ROC Curve for HMM1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Data Validation Test

(d) ROC Curve for CRF1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Method Test Validation

Figure 4.7: Accuracy and ROC curves of HMM1 and CRF1

www.manaraa.com

67

(a) FPR and TPR of HMM1

Validation Test

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 0 1 2 3 4 5
Threshold

F
P

R
/T

P
R

type FPR TPR

(b) FPR and TPR of CRF1

Validation Test

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 0 1 2 3 4 5
Threshold

F
P

R
/T

P
R

type FPR TPR

Figure 4.9: False Positive Rates and True Positive Rates of HMM1 and CRF1

www.manaraa.com

68

has slightly larger maximum accuracy values (about 98% range)than that of HMM2 (about

95% range). In addition, their overall trends with respect to the threshold value are similar,

with CRF2 climbing to the top sooner than HMM2 when threshold increases from 0. On the

other hand, the ROC curves in Figures 4.10c, 4.10d show that CRF2 has better ROC curve

performance than that of HMM1.

(a) Accuracy for HMM2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Threshold

A
cc

ur
ac

y

Data Validation Test

(b) Accuracy for CRF2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Threshold

A
cc

ur
ac

y

Method Test Validation

(c) ROC Curve for HMM2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Data Validation Test

(d) ROC Curve for CRF2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Method Test Validation

Figure 4.11: Accuracy and ROC curves of HMM2 and CRF2

www.manaraa.com

69

Lastly, if we examine the false positive rates and true positive rates displayed in Figure 4.13.

For HMM2, the TPR is in 85% ∼ 95% range when the FPR is controlled under 5%. However,

the TPR for CRF2 is about 98% when its FPR is controlled under 5%.

In summary, from the above discussion, we can see all of HMM2, CRF1 and CRF2 perform

better than HMM1 in our case study. That is, CRF models are more efficient than the HMM

model using only action sequences. On the other hand, CRF2 has slightly better performance

than and HMM2, and similar performance as CRF1.

4.5 Conclusions

CRF models are more flexible than HMM models, and can be more adaptive in real appli-

cations. In our experiments, we found that CRFs can lead to more efficient intrusion detection

systems than HMMs. On the other hand, an alternative approach to improve efficiency of an

intrusion detection system is to build the system on more informative data. In our discussion

here, we introduce the Situational data model, which provides more information than action

only sequences. Therefore, our experiments also demonstrate that an IDS making use of more

informative data can be more efficient, as can be seen in the advantage of HMM2 over HMM1.

In fact, we see that by adopting either a CRF model or a Situational data model, it gives more

efficient IDS than using HMM on action-only sequences. In addition, when HMM and CRF are

applied on the Situational data set, CRF2 performs slightly better and is also more robust than

HMM2, while both models have relatively satisfactory performance. For CRF1 and CRF2, their

performance are very similar. However, we should acknowledge that any experiment on a single

data set may be limited by the nature of the data itself. In our study, it may be that when

both methods, i.e., CRF1 and CRF2, have very high accuracy, it is not possible to distinguish

them over the current data. To explore in this direction further, a comparison between them

on a different and larger situational data may be warranted.

www.manaraa.com

70

(a) FPR and TPR of HMM2

Validation Test

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 0 1 2 3 4 5
Threshold

F
P

R
/T

P
R

type FPR TPR

(b) FPR and TPR of CRF2

Validation Test

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 0 1 2 3 4 5
Threshold

F
P

R
/T

P
R

type FPR TPR

Figure 4.13: False Positive Rates and True Positive Rates of HMM2 and CRF2

www.manaraa.com

71

CHAPTER 5. GENERAL CONCLUSION

This thesis contributes to improving the effectiveness of Intrusion Detection Systems built

by probabilistic graphical models from following three different perspectives:

1. Firstly, we propose to apply the Bayesian Model Averaging of Bayesian Network Classi-

fiers (BNMA) to build Intrusion Detection Systems. We compare the BNMA with Naive

Bayes and Bayesian Network by using them to train IDS in the KDD data set. The

result of our experiment shows that the BNMA is more efficient and more reliable than

the other two models based on static data without time stamps, especially when only a

small size of training data set is available.

2. Secondly, we build Situational Data Model as a mechanism for collecting dynamic se-

quential data set to train Intrusion Detection Systems. This Situational Data Model

motivated by finding and utilizing the relationship between intrusion occurrences and the

features’ change over time. It is more informative by revealing footprints that a user

left on the target system. We structure the Situational Data Model in time order and

also add the human internal mental states, i.e., desires, to it. We define the quantitative

measure (temporal intention) at each time point that describes the likelihood of being

an intrusion at this specific time. Based on the Situational Data Model we designed, a

Situational Data Set was collected on a real web application system named “CoRE” for

training and evaluating Intrusion Detection Systems. We then applied Hidden Markov

Models on both of the Situational sequences data set and action-only sequences data set

to compare these two different data models. From our experiment results, we observe

that our Situational Data Set is more effective than the action-only sequences data set.

www.manaraa.com

72

3. Thirdly, based on the foundation of the dynamic sequential data (Situational Data Set

and Action Only sequence data set) collected from the CoRE system, we propose to

apply Conditional Random Fields for building Intrusion Detection Systems. Theoreti-

cally, CRFs are able to utilize information from the sequential data more flexibly and

thoroughly. In addition, it is more representative and appropriate for intrusion detection

than other dynamical training models such as HMMs. To test our hypothesis, we con-

ducted experiments of applying CRF and HMM in action-only sequences data set and

also in the Situational Data Set. From the experiment results, we see that the CRF

outperforms the HMM significantly when we apply them in the actions only sequences.

On the other hand, when it comes to the Situational Data Set, their performance are

competitive with the CRF edging HMM slightly.

In summary, Bayesian Model Averaging of Bayesian Network Classifiers can benefit training

Intrusion Detection Systems, especially for static data set of relatively small size. To detect

intrusions before they eventually cause damage to the system, which typically leads to obvious

abnormal changes for the static environmental context, we should build dynamical intrusion

detection systems. Our Situational Data Model combined with Conditional Random Fields

could be very valuable for building more effective dynamic intrusion detection systems, as

evidenced from our experiment results. There are, however, still several limitations in this

thesis:

1. The malicious data sets we collect from CoRE application are generated from assumed

intruders but not real professional intruders. Our research could be more precise if we

are able to get real malicious data from some real-life web applications to train our

Intrusion Detection System. This limitation might also help explain that the effectiveness

of HMM is comparable with CRF when both are applied in our Situational Data Set.

Another possible reason for this phenomenon could be that the Situational Data Set has

helped improve the effectiveness to a substantial degree that there is not much room left

for further improvement in our Situational Data Set. Professional attackers could hide

their malicious desires better in the observed situational sequences. In that case, the

www.manaraa.com

73

advantages of CRF may be more obvious and we may be able to see that it outperforms

HMM obviously. However, it is not easy to collect those sensitive data for research use

due to credential concerns. Based on this limitation, we have tried our best to make our

experiments as close as to real practice. We collected our data from a real web application

CoRE, which provides a lot of functionalities that are frequently used in many other real

web applications. Also, all the assumed intruders participate in our experiments are from

Computer Science or related background and they are also trained with attacking skills

before the experiments. Thus our assumed intruders can apply different attacking skills

in their own way to attack the system and they closely mimic many kinds of attacking

behaviors used by real attackers. Therefore, we believe that our research result is very

convincing.

2. We have used supervised learning to train the Intrusion Detection Model. If we apply

this method in real practice, we need to manually label both the desires and temporal

intentions for our training data set. On the other hand, we don’t need to label those

for training data set when it comes to unsupervised learning, which usually performs

clustering analysis on the training data set first, and then do the classification. However,

unsupervised learning for intrusion detection usually has a very strong assumption that

the amount of normal data is always much more than that of malicious data in the

training data set. This assumption may not always be true in practice, thus it limits the

application scope of the IDS in the real world. With our supervised learning methodology

proposed in this thesis, we need the manual work for preparing and formatting the historic

training data set. Nevertheless, we believe that our research is valuable since both the

model training and classification process are automatic and can run in real time.

Our future work can focus on two aspects. The first aspect is to optimize the Situational

Data Model. Currently, we collect the actions and environmental context information. All

those collected information is only related to functional features. In the future, we may con-

sider collecting some non-functional features in our sequences of situations to train Intrusion

Detection System, such as throughput of the network, response time, etc. Also, we can work on

www.manaraa.com

74

collecting another data set based on optimized Situational Data Model, and test the reliability

of our methodology in data sets collected in other applications or platforms. The other aspect

is to conduct some research on how to use unsupervised learning on this issue without the

assumption that the amount of malicious data is always less than the normal data.

www.manaraa.com

75

REFERENCES

[1] Al-Jarrah, O. and Arafat, A. (2015). Network intrusion detection system using neural

network classification of attack behavior. Journal of Advances in Information Technology

Vol, 6(1).

[2] Altwaijry, H. (2013). Bayesian based intrusion detection system. In IAENG Transactions

on Engineering Technologies, pages 29–44. Springer.

[3] Altwaijry, H. and Algarny, S. (2012). Bayesian based intrusion detection system. Journal

of King Saud University - Computer and Information Sciences, 24(1):1–6.

[4] Amor, N. B., Benferhat, S., and Elouedi, Z. (2004). Naive bayes vs decision trees in intrusion

detection systems. In Proceedings of the 2004 ACM symposium on Applied computing, pages

420–424. ACM.

[5] An, X., Jutla, D. N., and Cercone, N. (2006). Privacy intrusion detection using dynamic

Bayesian networks. In International Conference on Electronic Commerce, pages 208–215.

[6] Angrosh, M., Cranefield, S., and Stanger, N. (2010). Context identification of sentences in

related work sections using a conditional random field: towards intelligent digital libraries.

In Proceedings of the 10th annual joint conference on Digital libraries, pages 293–302. ACM.

[7] Ariu, D., Tronci, R., and Giacinto, G. (2011). Hmmpayl: An intrusion detection system

based on hidden markov models. computers & security, 30(4):221–241.

[8] Bahl, S. and Sharma, S. K. (2016). A minimal subset of features using correlation feature

selection model for intrusion detection system. In Proceedings of the Second International

Conference on Computer and Communication Technologies, pages 337–346. Springer.

www.manaraa.com

76

[9] Bande, V. and Prasan, U. (2011). Robust intrusion detection system using layered approach

with conditional random fields. 1.

[10] Catania, C. A. and Garino, C. G. (2012). Automatic network intrusion detection: Current

techniques and open issues. Computers & Electrical Engineering, 38(5):1062–1072.

[11] Chang, C. K., Jiang, H.-y., Ming, H., and Oyama, K. (2009). Situ: A situation-theoretic

approach to context-aware service evolution. Services Computing, IEEE Transactions on,

2(3):261–275.

[12] Chebrolu, S., Abraham, A., and Thomas, J. P. (2005). Feature deduction and ensemble

design of intrusion detection systems. Computers & Security, 24(4):295–307.

[13] Chen, C.-M., Guan, D., Huang, Y.-Z., and Ou, Y.-H. (2012). Attack sequence detection

in cloud using hidden markov model. In Information Security (Asia JCIS), 2012 Seventh

Asia Joint Conference on, pages 100–103. IEEE.

[14] Chen, R.-C., Cheng, K.-F., and Hsieh, C.-F. (2010). Using rough set and support vector

machine for network intrusion detection. arXiv preprint arXiv:1004.0567.

[15] Chickering, D. M., Geiger, D., and Heckerman, D. (1995). Learning Bayesian networks:

Search methods and experimental results. In Proceedings of the Fifth International Work-

shop on Artificial Intelligence and Statistics, pages 112–128, Ft. Lauderdale, FL. Society for

Artificial Intelligence and Statistics.

[16] Dash, D. and Cooper, G. F. (2004). Model averaging for prediction with discrete bayesian

networks. The Journal of Machine Learning Research, 5:1177–1203.

[17] Devarakonda, N., Pamidi, S., Kumari, V. V., and Govardhan, A. (2012). Intrusion de-

tection system using bayesian network and hidden markov model. Procedia Technology,

4(0):506–514.

[18] Eaton, D. and Murphy, K. (2007). Bayesian structure learning using dynamic programming

and mcmc. In Proceedings of Conference on Uncertainty in Artificial Intelligence.

www.manaraa.com

77

[19] Feshki, M. G., Sojoodi, O., and Anvary, M. D. (2015). Managing intrusion detection alerts

using support vector machines. no, 9:266–273.

[20] Francois, J.-M. (2010). Jahmm: An implementation of hidden markov models in java.

[21] Ghahramani, Z. (2001). An introduction to hidden markov models and bayesian networks.

International Journal of Pattern Recognition and Artificial Intelligence, 15(01):9–42.

[22] Grossman, J. (2007). XSS Attacks: Cross-site scripting exploits and defense. Syngress.

[23] Gupta, K. K., Nath, B., and Kotagiri, R. (2010). Layered approach using conditional

random fields for intrusion detection. Dependable and Secure Computing, IEEE Transactions

on, 7(1):35–49.

[24] Heckerman, D. (1996). A tutorial on learning with bayesian networks. Technical report,

Microsoft Research Advanced Technology Division.

[25] Heckerman, D., Geiger, D., and Chickering, D. M. (1995). Learning bayesian networks:

The combination of knowledge and statistical data. Machine Learning, 20(3):197–243.

[26] Huijuan, L., Jianguo, C., and Wei, W. (2008). Two stratum bayesian network based

anomaly detection model for intrusion detection system. In Proceedings of the 2008 In-

ternational Symposium on Electronic Commerce and Security, ISECS ’08, pages 482–487,

Washington, DC, USA. IEEE Computer Society.

[27] Imran, M., Afzal, M. T., and Qadir, M. A. (2015). Using hidden markov model for dynamic

malware analysis: First impressions. In Fuzzy Systems and Knowledge Discovery (FSKD),

2015 12th International Conference on, pages 816–821. IEEE.

[28] Jain, R. and Abouzakhar, N. S. (2013). A comparative study of hidden markov model and

support vector machine in anomaly intrusion detection. Journal of Internet Technology and

Secured Transactions, 2.

[29] Joder, C., Essid, S., and Richard, G. (2011). A conditional random field framework for

robust and scalable audio-to-score matching. Audio, Speech, and Language Processing, IEEE

Transactions on, 19(8):2385–2397.

www.manaraa.com

78

[30] Kayacik, H. G., Zincir-Heywood, A. N., and Heywood, M. I. (2005). Selecting features for

intrusion detection: a feature relevance analysis on kdd 99 intrusion detection datasets. In

Proceedings of the third annual conference on privacy, security and trust.

[31] KDD (1999). KDDCUP 1999 data. Available at: http://kdd.ics.uci.edu/databases/

kddcup99.

[32] Klinger, R. and Tomanek, K. (2007). Classical probabilistic models and conditional random

fields. TU, Algorithm Engineering.

[33] Koller, D. and Friedman, N. (2009a). Probabilistic Graphical Models: Principles and

Techniques. MIT Press.

[34] Koller, D. and Friedman, N. (2009b). Probabilistic graphical models: principles and tech-

niques. MIT press.

[35] Kost, S. (2004). An introduction to sql injection attacks for oracle developers.

[36] Kotsiantis, S. and Kanellopoulos, D. (2006). Discretization techniques: A recent survey.

GESTS International Transactions on Computer Science and Engineering, 32(1):47–58.

[37] Kou, G., Peng, Y., Chen, Z., and Shi, Y. (2009). Multiple criteria mathematical program-

ming for multi-class classification and application in network intrusion detection. Information

Sciences, 179(4):371–381.

[38] Kruegel, C., Mutz, D., Robertson, W., and Valeur, F. (2003). Bayesian event classifi-

cation for intrusion detection. In Proceedings of the 19th Computer Security Applications

Conference, pages 14–23.

[39] Kruegel, C. and Toth, T. (2003). Using decision trees to improve signature-based intrusion

detection. In Recent Advances in Intrusion Detection, pages 173–191. Springer.

[40] Kudo, T. (2005). Crf++: Yet another crf toolkit. Software available at http://crfpp.

sourceforge. net.

http://kdd.ics.uci.edu/databases/kddcup99
http://kdd.ics.uci.edu/databases/kddcup99

www.manaraa.com

79

[41] Laskey, K., Alghamdi, G., Wang, X., Barbará, D., Shackelford, T., Wright, E., and Fitzger-

ald, J. (2004). Detecting threatening behavior using bayesian networks. In Conference on

Behavioral Representation in Modeling and Simulation – BRIMS, Arlington, VA, USA.

[42] Liao, H.-J., Richard Lin, C.-H., Lin, Y. C., and Tung, K.-Y. (2013). Intrusion detection

system: A comprehensive review. Journal of Network and Computer Applications, 36(1):16–

24.

[43] Modi, C., Patel, D., Borisaniya, B., Patel, H., Patel, A., and Rajarajan, M. (2013). A

survey of intrusion detection techniques in cloud. Journal of Network and Computer Appli-

cations, 36(1):42–57.

[44] Ng, J., Joshi, D., and Banik, S. M. (2015). Applying data mining techniques to intrusion

detection. In Information Technology-New Generations (ITNG), 2015 12th International

Conference on, pages 800–801. IEEE.

[45] Nguyen, L. (2017). Tutorial on hidden markov model. Applied and Computational Math-

ematics, 6(4-1):16–38.

[46] Olusola, A. A., Oladele, A. S., and Abosede, D. O. (2010). Analysis of kdd99 intrusion

detection dataset for selection of relevance features. In Proceedings of the World Congress

on Engineering and Computer Science, volume 1, pages 20–22.

[47] Patil, S. V. and Kulkarni, P. J. (2011). Intrusion detection using conditional random fields.

International Journal of Network Security (2152-5064), 2(3).

[48] P.Rigaux (2014). The myreview system. http://myreview.sourceforge.net.

[49] Sebyala, A. A., Olukemi, T., and Sacks, L. (2002). Active platform security through

intrusion detection using naive bayesian network for anomaly detection. In Proceedings of

the 2002 London Communications Symposium.

[50] Shen, Y., Yan, J., Yan, S., Ji, L., Liu, N., and Chen, Z. (2011). Sparse hidden-dynamics

conditional random fields for user intent understanding. In Proceedings of the 20th interna-

tional conference on World wide web, pages 7–16. ACM.

http://myreview.sourceforge.net

www.manaraa.com

80

[51] Shivarkar, S. A. and Bendre, M. R. (2010). Hybrid approch for intrusion detection using

conditional random fields. International Journal of Computer Technology and Electronics

Engineering (IJCTEE) Volume, 1.

[52] Shunmughanathen, K. et al. (2016). An intelligent temporal adaptive genetic fuzzy clas-

sification algorithm for effective intrusion detection. Transylvanian Review, 24(8).

[53] Silander, T. and Myllymäki, P. (2006). A simple approach for finding the globally optimal

bayesian network structure. In Conference on Uncertainty in Artificial Intelligence, pages

445–452. AUAI Press.

[54] Singh, S. and Silakari, S. (2009). An ensemble approach for feature selection of cyber attack

dataset. International Journal of Computer Science and Information Security, 6(2):297–302.

[55] Sutton, C. and McCallum, A. (2006). An introduction to conditional random fields for

relational learning, volume 2. Introduction to statistical relational learning. MIT Press.

[56] Tan, Y., Liao, S., and Zhu, C. (2011). Efficient intrusion detection method based on

conditional random fields. In Computer Science and Network Technology (ICCSNT), 2011

International Conference on, volume 1, pages 181–184. IEEE.

[57] Tavallaee, M., Bagheri, E., Lu, W., and Ghorbani, A. (2009). A detailed analysis of the

kdd cup 99 data set. In IEEE Symposium on Computational Intelligence for Security and

Defense Applications,(CISDA)., pages 1–6.

[58] Tian, J., He, R., and Ram, L. (2010). Bayesian model averaging using the k-best bayesian

network structures. In Proceedings of the Twenty-Sixth Conference Annual Conference on

Uncertainty in Artificial Intelligence (UAI-10), pages 589–597, Corvallis, Oregon. AUAI

Press.

[59] Tsai, C.-J., Lee, C.-I., and Yang, W.-P. (2008). A discretization algorithm based on

class-attribute contingency coefficient. Information Sciences, 178(3):714–731.

www.manaraa.com

81

[60] Vijayasarathy, R., Raghavan, S., and Ravindran, B. (2011). A system approach to network

modeling for ddos detection using a näıve bayesian classifier. In 2011 Third International

Conference on Communication Systems and Networks (COMSNETS), pages 1–10.

[61] Wallach, H. M. (2004). Conditional random fields: An introduction. Technical Reports

(CIS), page 22.

[62] Wang, Y., Jiang, H., Liu, Z., and Chen, S. (2015). A crf-based method for ddos attack

detection. In Proceedings of the 4th International Conference on Computer Engineering and

Networks, pages 81–87. Springer.

[63] Wee, Y. Y., Cheah, W. P., Tan, S. C., and Wee, K. (2011). Causal discovery and reasoning

for intrusion detection using bayesian network. International Journal of Machine Learning

and Computing, 1(2):185–192.

[64] Xie, H. and Chang, C. K. (2015). Detection of new intentions from users using the crf

method for software service evolution in context-aware environments. In Computer Software

and Applications Conference (COMPSAC), 2015 IEEE 39th Annual, volume 2, pages 71–76.

IEEE.

[65] Zhang, J. and Gong, S. (2010). Action categorization with modified hidden conditional

random field. Pattern Recognition, 43(1):197–203.

	2016
	Intrusion detection using probabilistic graphical models
	Liyuan Xiao
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	1. GENERAL INTRODUCTION
	2. BAYESIAN MODEL AVERAGING OF BAYESIAN NETWORK CLASSIFIERS FOR INTRUSION DETECTION
	2.1 Introduction
	2.2 Bayesian Networks and Bayesian Model Averaging
	2.2.1 Bayesian Network Classifier
	2.2.2 Bayesian Model Averaging of Bayesian Network Classifiers
	2.2.3 Finding the k-best Bayesian Network Structures

	2.3 Description of NSL-KDD Dataset
	2.4 Construction and Evaluation of BNMA Classifier
	2.4.1 Feature Selection
	2.4.2 Data Discretization
	2.4.3 Classifier Training and Evaluation

	2.5 Experimental Results
	2.6 Conclusion and Future Work

	3. SITUATIONAL DATA FOR INTRUSION DETECTION SYSTEM
	3.1 Introduction
	3.2 Related Work
	3.2.1 Hidden Markov Model
	3.2.2 Situ Framework

	3.3 Situational Data for Intrusion Detection
	3.3.1 Definition of Situational Data Model for Intrusion Detection
	3.3.2 SQL Injection
	3.3.3 Collection of Situational Data for Intrusion Detection

	3.4 Evaluation of Situational Data for IDS by HMM
	3.4.1 Description of Experiment
	3.4.2 Experiment Results

	3.5 Conclusion and Future Work

	4. SITUATION AWARE INTRUSION DETECTION SYSTEM USING CONDITIONAL RANDOM FIELDS
	4.1 Introduction
	4.2 Conditional Random Fields
	4.3 Situation Aware Intrusion Detection using Conditional Random Fields
	4.3.1 Framework of SA-CRF-IDS
	4.3.2 Parameters Training for SA-CRF-IDS
	4.3.3 Inference of SA-CRF-IDS

	4.4 Experiment Design and Evaluation
	4.4.1 Experiment Design
	4.4.2 Experiment Evaluation

	4.5 Conclusions

	5. GENERAL CONCLUSION
	REFERENCES

